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Abstract

We consider the problem of online fair division of indivisible goods to players when
there are a finite number of types of goods and player values are drawn from dis-
tributions with unknown means. Our goal is to maximize social welfare subject to
allocating the goods fairly in expectation. When a player’s value for an item is un-
known at the time of allocation, we show that this problem reduces to a variant of
(stochastic) multi-armed bandits, where there exists an arm for each player’s value
for each type of good. At each time step, we choose a distribution over arms which
determines how the next item is allocated. We consider two sets of fairness constraints
for this problem: envy-freeness in expectation and proportionality in expectation. Our
main result is the design of an explore-then-commit algorithm that achieves Õ(T 2/3)
regret while maintaining either fairness constraint. This result relies on unique proper-
ties fundamental to fair-division constraints that allow faster rates of learning, despite
the restricted action space. We also prove a lower bound of Ω̃(T 2/3) regret for our
setting, showing that our results are tight.
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1 Introduction

Fair allocation of indivisible goods is a fundamental problem with a wide range of appli-
cations; implemented algorithms for this task have been widely used in practice [14]. We
consider the online fair division setting, which introduces additional complexities as items
arrive one by one and each item must be immediately and irrevocably allocated at its time
of arrival. Crucially, this allocation must be done without knowledge of future items [5].
One motivating example for this setting is a food bank that receives donations for a region
and then allocates these donations among many different food pantries and soup kitchens in
that region. Donations are often perishable, and therefore must be immediately allocated.
Furthermore, donations can be unpredictable, and hence knowledge of future items is limited.

Two standard notions of fairness are envy-freeness and proportionality. Envy-freeness implies
that every player is at least as happy with their own allocation as with any other player’s
allocation. Intuitively, envy-freeness guarantees that no player will want to trade their
allocation for that of another player. Proportionality is a slightly weaker notion, which
requires only that each of the n players receive at least a 1/n fraction of their total value for
all items. Finding a solution which is envy-free or proportional is often interesting in and
of itself, as can be seen from many previous results in fair division [7, 30, 12, 3]. In cases
where there may exist multiple envy-free or proportional allocations, however, a natural goal
is then to find the best solution among such allocations [13]. In our work, we evaluate the
quality of a fair solution by its (utilitarian) social welfare, which is defined as the sum over
all players of each player’s value for their own allocation.

We take a probabilistic approach to analyzing online fair division. In particular, we assume
that there are a finite number of item types, and each player’s value for each type of item is
drawn from a random distribution. In practice, these distributions would not be known in
advance and must be learned as items are allocated. For example, consider again the food
bank. When a new food pantry opens, the values of that food pantry for different types of
products are unknown. After items have been allocated to the food pantry, however, the food
bank can easily collect information on the demand for various item types at the food pantry.
Therefore, we primarily consider the setting where the player distributions are unknown in
advance, and a player’s true value for an item is observed if and only if that player receives
the item. This problem can be viewed as a variant of the multi-armed bandits problem,
as the goal is to learn unknown distributions (player values) while maintaining high reward
(social welfare), subject to fairness constraints; with a finite number of types of items, pulling
an arm represents allocating a specific item type to a specific player.

As is standard in the multi-armed bandits literature, we use the notion of regret to measure
the difference between our algorithm’s performance and that of the optimal policy that
knows the value distributions and is subject to the same fairness constraints. Our overarching
challenge is this: design online allocation algorithms that achieve low regret while maintaining
fairness in the form of envy-freeness or proportionality.
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1.1 Our Results

Our main result is that there exists a simple optimization-based explore-then-commit algo-
rithm that achieves Õ(T 2/3) regret and maintains envy-freeness in expectation (Algorithm 1
and Theorem 1). A variant of the same algorithm achieves Õ(T 2/3) regret while maintaining
proportionality in expectation. The key step of the algorithm is a linear program-based op-
timization that guarantees that the constraints are satisfied without significantly decreasing
social welfare.

The main difficulty in this learning problem is that the envy-freeness and proportionality
constraints depend on the unknown value distributions and may be tight constraints without
any slack. We therefore develop novel machinery that relies on fundamental properties of
these fairness notions. One observation is that our fairness constraints are always satisfied
when players are treated equally. Another crucial property is that when players have unequal
values, these fairness notions can be satisfied with slack (Property 2). The latter property
is especially challenging to show for envy-freeness, and the combinatorial algorithm that
achieves it (Lemma 1) should be of independent interest to researchers in fair division.

1.2 Related Work

Online Fair Division. Work in online fair division generally deals with dividing goods
when there is uncertainty about the future. Early work in the area focused on axiomatic
questions [31, 1].

Our paper is most closely related to work by Benadè et al. [5]. Like us, they consider a setting
where indivisible items arrive online and must be allocated immediately and irrevocably to
players. They study several models for how the values of items are determined, ranging
from a model where values are drawn i.i.d. from a distribution common to all players and
items to, at the other extreme, an adversarial model with worst-case values. There are two
fundamental differences between their work and ours. First, Benadè et al. [5] do not optimize
social welfare; rather, they seek to either just minimize envy, or do so while (approximately)
satisfying the axiomatic notion of Pareto efficiency. Second, and more crucially, they assume
that the values of all players for an item are known at the time of its arrival, whereas in our
model the values are unknown. It is precisely this modeling choice that induces a learning
problem and underlies the connection between our setting and multi-armed bandits, which
is absent in prior work in online fair division.

Like us, Yamada et al. [35] also study online fair division through the lens of bandit learning.
Their setting is similar to ours in that they consider a finite number of item types where player
values for item types are initially unknown. However, [35] do not guarantee fairness through
constraints – instead, they incorporate fairness through their objective function of Nash
social welfare. [35] also make an additional assumption that player values are normalized,
which we do not require for our results.

Fairness in Multi-armed Bandits. The other main body of literature related to our pa-
per is multi-armed bandits with constraints. One notion of fairness in multi-armed bandits
is the idea that similar individuals and/or groups should be treated similarly [9, 18, 23]. The
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fairness constraint of Joseph et al. [17] is that a worse arm is not pulled with higher probabil-
ity than a better arm. Their definition of fairness is actually incompatible with maintaining
envy-freeness (or proportionality), because maintaining envy-freeness may require allocating
an item to a player with lower value to prevent envy. Another common fairness constraint in
multi-armed bandits is that every arm receives a minimum fraction of pulls [10, 11, 20, 28].
This notion of fairness is also not compatible with envy-freeness because the optimal envy-
free allocation may never give a player a specific item type. There also exist many other
fairness notions in contextual bandits that are farther from our setting [15, 29, 32, 34]. Wei
et al. [33] analyze a form of envy-freeness in contextual bandits, but their envy-freeness
notion depends only on the treatment probabilities instead of the values.

Our paper is also closely related to work on multi-armed bandits subject to general linear
constraints. Multiple works in linear bandits study “safety” with respect to a linear con-
straint that depends on the unknown true mean values [2, 8, 26]. Amani et al. [2] focus on a
single constraint and specifically show that if there is positive slack in the optimal solution,
then Õ(T 1/2) regret is possible. If there is zero slack, however, their algorithm only achieves
Õ(T 2/3) regret. This differs from our work because envy-freeness and proportionality involve
multiple constraints that can have zero slack. Note that our setting is similar but not equiv-
alent to linear bandits, as a single arm is pulled in each step in our setting. There also exist
many results for cumulative constraints in bandits [21, 22]. These are less closely related to
our model as we consider constraints that must hold at every time step. Finally, there is a
branch of multi-armed bandits that studies constraints in expectation at each step as in our
paper. However, these works are also in the linear bandits setting and again require a safety
gap that fairness constraints such as envy-freeness may not guarantee [27].

Practical Motivation. Mertzanidis et al. [25] apply online fair division algorithms through
a partnership with a program in Indiana that redistributes rejected truckloads of food. The
program, known as Food Drop, allocates 10,000+ pounds of rejected food per month to food
banks. In this application, the available food arrives in an online and unpredictable way,
and the trucks must be allocated immediately. More generally, the specific food donations
depend on what items grocery stores or restaurants have remaining at the end of the day.
Therefore, donations are unpredictable, which we model through randomness.

In practice, utilities for food donations such as in the Food Drop program may not be
additive. However, if the deliveries are sufficiently infrequent, then additive player utilities
are likely to be a good approximation. For example, in the food allocation data of [19],
there were a total of 1760 donations from 169 donors over the course of five months and 277
organizations that received donations. Therefore, the organizations receive donations every
3-4 weeks on average, suggesting that donations can be largely regarded as independent.

2 Model

In this section we introduce our basic setting and terminology.
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2.1 Online Allocation With Unknown Values

Suppose we have a set of players N = [n] and a set of object types M = [m]. Given a set of
T indivisible items, an allocation A = (A1, ..., An) is a partition of the T items among the n
players, where player i receives the items in Ai. In our model, we assume that every item j
has a type k(j) ∈ [m], and that there exists a (possibly unknown) matrix µ∗ such that each
player i’s value for an item of type k ∈ [m] is independently drawn from a sub-Gaussian
distribution with mean µ∗

ik. Player values are assumed to be independent across both players
and items. We will often refer to µ∗

i as the vector of mean values for player i. For a specific
item j, we denote player i’s value for item j as Vi(j), and similarly, player i’s value for their
allocation Ai as Vi(Ai) =

∑
j∈Ai

Vi(j). The (utilitarian) social welfare of an allocation A is
sw(A) =

∑n
i=1 Vi(Ai).

We consider algorithms in the following online setting. At each time step t ∈ [T ], an item jt
of type kt arrives, where kt ∼ D, for some known distribution D supported on [m]. We will
assume that D = Unif([m]), or in other words that every item has an equal probability of
being type 1, ...,m. We make this choice purely for ease of exposition, in order to simplify
notation; our results and techniques extend seamlessly to arbitrary distributions D that do
not depend on T , as we explain in Appendix C.1. The algorithm observes the item type kt,
and must then immediately allocate the item jt to a player it, at which time the algorithm
observes that player’s value Vit(jt). Note that the algorithm does not observe any other
player’s value for item jt. The high-level goal is to allocate these items in a manner that
maximizes the social welfare of the final allocation of all T items.

We denote X ∈ Rn×m as a valid fractional allocation if
∑

i Xik = 1 for every k ∈ [m].
One valid fractional allocation we will often refer to is the uniform at random allocation
(UAR), where every entry is 1

n
. At every time-step t, before observing kt, the allocation

algorithm ALG takes as input the history Ht = {(kt′ , it′ , Vit′
(jt′)) : t′ < t} and returns a

fractional allocation Xt = ALG(Ht), where (Xt)ik represents the probability of allocating
the item to player i if the item is of type k. If the next item is of type kt, then the algorithm
allocates the item randomly among the n players according to the distribution induced by
the kth

t column of Xt, i.e. (X⊤
t )kt . Therefore, the tth item is allocated to player i with

probability (Xt)ikt . We denote the final realized allocation that ALG returns as A(ALG),
and the corresponding partial allocation up to time τ as Aτ (ALG). This online process is
summarized in pseudo-code in Appendix A.

We will also assume (explicitly in our theorem statements) that for all i, k, there exist known
constants a, b > 0 such that a ≤ µ∗

ik ≤ b. This assumption is necessary because if we allow
the means of values to be arbitrary close to zero, then it can be impossible to achieve regret
of o(T ). This is formalized in Theorem 11 in Appendix C.2.

2.2 Fairness Notions

We will primarily use two metrics of fairness to evaluate an online allocation algorithm ALG:
envy-freeness in expectation and proportionality in expectation. Both are defined below. For
two vectors x, y ∈ Rn, we use ⟨x, y⟩ = x · y to represent the dot product of the two vectors.
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Definition 1. Let Xt = ALG(Ht) be the fractional allocation used by algorithm ALG at
time t given history Ht. Then ALG satisfies envy-freeness in expectation (EFE) if for all t
and all Ht, (Xt)i · µ∗

i ≥ maxi′∈[n] (Xt)i′ · µ∗
i for all i.

Definition 2. Let Xt = ALG(Ht) be the fractional allocation used by algorithm ALG at
time t given history Ht. Then ALG satisfies proportionality in expectation (PE) if for all t
and all histories Ht, (Xt)i · µ∗

i ≥ 1
n

∑
i′∈[n] (Xt)i′ · µ∗

i for all i.

Intuitively, envy-freeness in expectation is equivalent to maintaining that at every time step
t and before observing the item type kt, no player prefers the fractional allocation of any
other player in Xt. Similarly, proportionality in expectation is equivalent to maintaining
that at every time step t and before observing the item type kt, the expected value of every
player for their fractional allocation is at least 1/n times that player’s value if they received
the item with probability 1.

In Appendix B, we justify some of the implicit choices behind these definitions. Specifically,
we discuss why we consider envy-freeness in expectation rather than its realization, and also
why we require envy-freeness in expectation to hold at every individual time step. Analogous
results for proportionality can be found in Appendix B.1. For the former question, Theorem
3 shows that in our setting, no algorithm can with high probability output an allocation
A(ALG) with realized envy less than

√
T . Note that Benadè et al. [5] show that in the

adversarial setting, no algorithm can guarantee o(
√
T ) realized envy. Conversely, they also

show that when values are generated randomly and observed before allocation, there exists
an algorithm that can guarantee o(1) realized envy with high probability. Theorem 3 shows
that when values are still generated randomly but are unknown at the time of allocation (as
in our setting), no algorithm can guarantee o(

√
T ) realized envy with high probability. We

complement Theorem 3 with Theorem 4, which shows that any algorithm ALG that satisfies
envy-freeness in expectation will output a final allocation A(ALG) with realized envy of at
most

√
T log(T ) with high probability. Therefore, envy-free in expectation algorithms are

within a log(T ) factor of being “optimal” in terms of final realized envy.

We also show that requiring envy-freeness in expectation at every time step does not lead
to any social welfare loss compared to requiring envy-freeness in expectation only at the end
of T rounds. More specifically, Theorem 5 (again in Appendix B) implies that requiring
that no player is envious in expectation of any other player at the end of all T rounds is
equivalent to maintaining envy-freeness in expectation at all times t ∈ [T ] when maximizing
social welfare. A key step of our proof of Theorem 5 is showing that for every time- or
history-dependent algorithm ALG which achieves envy-freeness in expectation at the end
of T rounds, there exists another algorithm ALG′ that is time- and history-independent,
envy-free in expectation at every time step, and achieves the same social welfare. Therefore,
maximizing social welfare only over algorithms which are envy-free in expectation at every
time step is sufficient even if envy-freeness in expectation at the end of T rounds is all that
is desired.

We can formulate our fairness notions as linear constraints, in the spirit of prior work in
fair division [4]. Formally, define ⟨A,B⟩F as the Frobenius inner product of matrices A and
B. For B ∈ Rn×m, c ∈ R, and a fractional allocation X, we represent the linear constraint
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⟨B,X⟩F ≥ c as the tuple (B, c). A fractional allocationX satisfies a set of L linear constraints
{(Bℓ, cℓ)}Lℓ=1 if for all ℓ ∈ [L], ⟨Bℓ, X⟩F ≥ cℓ. Because the constraints represent “fairness in
expectation” relative to the mean values, we will explicitly let the constraint matrix Bℓ(µ

∗)
be a function of the mean value matrix µ∗. Therefore, we will consider sets of constraints of
the form {(Bℓ(µ

∗), cℓ)}Lℓ=1. Because these constraints are functions of µ, we will also refer to
families of constraints

{
{(Bℓ(µ), cℓ)}Lℓ=1

}
µ
.

The following two remarks show how envy-freeness in expectation and proportionality in
expectation can be represented within this framework.

Remark 1. For every ℓ ∈ [n2], construct Befe
ℓ (µ∗) as follows. Define i = ⌈ ℓ

n
⌉ and i′ = (ℓ

mod n) + 1. For every k ∈ [K], let (Befe
ℓ (µ∗))ik = µ∗

ik and (Befe
ℓ (µ∗))i′k = −µ∗

ik. For all
i′′ ̸∈ {i, i′}, let (Befe

ℓ (µ∗))i′′ = 0. Then the envy-freeness in expectation constraints for mean
µ∗ as defined in Definition 1 correspond to efe(µ∗) := {(Befe

ℓ (µ∗), 0)}n2

ℓ=1.

Remark 2. For every ℓ ∈ [n], construct Bpe
ℓ (µ∗) as follows. For every k ∈ [m], (Bpe

ℓ (µ∗))ℓk =
(n−1)

n
·µ∗

ℓk and (Bpe
ℓ (µ∗))ik = − 1

n
·µ∗

ℓk for every i ̸= ℓ. Then the proportionality in expectation
constraints for mean µ∗ as defined in Definition 2 correspond to pe(µ∗) = {(Bpe

ℓ (µ∗), 0)}nℓ=1.

2.3 Regret and Problem Formulation

An algorithm ALG satisfies constraints {(Bℓ(µ
∗), cℓ)}Lℓ=1 if for all t ∈ [T ], the fractional

allocation Xt used by ALG at time t satisfies the constraints {(Bℓ(µ
∗), cℓ)}Lℓ=1. When µ∗

is known, the expected social welfare can be directly optimized over all algorithms ALG
that satisfy constraints {(Bℓ(µ

∗), cℓ)}Lℓ=1. This problem is equivalent to solving LP (1) with
µ = µ∗ and using the solution Y µ∗

as the fractional allocation for all time steps.

Y µ := argmax ⟨X,µ⟩F
s.t. ⟨Bℓ(µ), X⟩F ≥ cℓ ∀ℓ∑

i

Xik = 1 ∀k (1)

When µ∗ is unknown, we define the regret of an algorithm ALG as follows. Note that the
baseline algorithm in this definition of regret is the optimal allocation algorithm under the
constraints when µ∗ is known.

Definition 3. Let Y µ∗
be the solution to LP (1) for µ = µ∗. Let Xt = ALG(Ht) be the

fractional allocation used by algorithm ALG at time t given history Ht. Then the T -step
regret of ALG for constraints {(Bℓ(µ

∗), cℓ}Lℓ=1 is T · ⟨Y µ∗
, µ∗⟩F −

∑T−1
t=0 ⟨Xt, µ

∗⟩F .

We are now ready to present the formal problem statement. Because the constraints depend
on the unknown values that are being learned, we only require constraint satisfaction with
high probability.

Problem 1. Suppose we are given n,m, T, a, b such that 0 < a ≤ µ∗
ik ≤ b for all i ∈

[n], k ∈ [m]. Given a family of fairness constraints
{
{(Bℓ(µ), cℓ)}Lℓ=1

}
µ
representing either

envy-freeness in expectation or proportionality in expectation, the goal is to construct an
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algorithm ALG such that with probability 1 − 1/T , Xt = ALG(Ht) satisfies the constraints
(Bℓ(µ

∗), cℓ)}Lℓ=1 for all t ∈ [T ] and the regret of ALG for constraints (Bℓ(µ
∗), cℓ)}Lℓ=1 is o(T ).

Note that the o(T ) regret in Problem 1 will be Õ(T 2/3) for our results. We use the standard
O() and Õ() notation with respect to the number of time steps T , and therefore the constants
represented by this notation may depend on other problem parameters such as n and m.

3 Fairness Machinery

Our goal in this section is to establish novel, fundamental properties of envy-freeness and
proportionality in expectation, which will serve as a crucial part of the machinery underlying
our regret bounds.

In the context of fairness, a natural assumption is that if a group of individuals are treated
equally, then that group is considered to be treated fairly. In that spirit, our first key
property is as follows.

Property 1. For any ℓ ∈ [L], suppose that a fractional allocation X ∈ Rn×m satisfies
Xi1 = Xi2 , ∀i1, i2 ∈ {i : Bℓ(µ)i ̸= 0}. Then ⟨Bℓ(µ), X⟩F ≥ cℓ.

Informally, a set of constraints satisfies Property 1 if for any constraint in the set, the
constraint is always satisfied when all players involved in the constraint have the same
fractional allocation. An important consequence of Property 1 is that the uniform at random
allocation satisfies every constraint. This implies that even with no information about the
players’ mean values, the uniform at random allocation will always be fair.

Note that envy-freeness in expectation satisfies Property 1 because any two players with
equal allocations are never envious of each other. Proportionality in expectation also satisfies
Property 1, because if every player has the same allocation, then every player is receiving
exactly their proportional allocation.

Observation 1. The envy-freeness in expectation and proportionality in expectation con-
straints satisfy Property 1.

Our second key property is more technical and novel. Intuitively, the property requires the
existence of a fractional allocation X ′ that is only slightly worse than the optimal constrained
allocation Y µ, but unlike the latter allocation, in X ′ the constraints either hold with slack
or all players involved in the constraint are treated equally. Interestingly, this property
does not hold for arbitrary sets of linear constraints, but relies on structure inherent to
the envy-freeness in expectation and proportionality in expectation constraints. The bulk
of the theoretical work of this paper is proving that the envy-freeness in expectation and
proportionality in expectation constraints satisfy this property.

Property 2. Let Y µ be the solution to LP (1). Then there exists constants (relative to T )
γ0 and CP2 > 0 such that for any γ < γ0 and any µ, there exists a fractional allocation X ′

such that ⟨X ′, µ⟩F ≥ ⟨Y µ, µ⟩F − CP2γ, and such that for each ℓ ∈ [L], either

1. ⟨Bℓ(µ), X
′⟩F ≥ cℓ + γ or
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2. ∀i1, i2 ∈ {i : Bℓ(µ)i ̸= 0}, X ′
i1
= X ′

i2
.

Lemma 1. The family of envy-freeness in expectation constraints satisfies Property 2.

Proof sketch. We will informally argue that we can transform Y µ into a fractional allocation
X ′ which satisfies Property 2 through Algorithm 3. Algorithm 3 iterates over ‘envy-with-
slack-α’ graphs, which track whether a player prefers their allocation by at least α over
another player’s allocation. More specifically, given parameters µ,X, and α, the correspond-
ing ‘envy-with-slack’ graph has vertices N and edge set E such that a directed edge from i
to i′ exists if and only if Xi ·µi−Xi′ ·µi < α. The weight of each such edge is Xi ·µi−Xi′ ·µi.
At a high level, Algorithm 3 constructs ‘envy-with-slack-α’ graphs with progressively smaller
α, with α ≥ γ for all iterations. The algorithm operates on sets of nodes called equivalence
classes, where every pair of nodes in an equivalence class has the same allocation. Algo-
rithm 3 makes progress in every iteration by either 1) merging two equivalence classes, or 2)
removing an edge from the graph.

An overview of the algorithm is as follows. In each iteration, Algorithm 3 generally performs
one of three operations and decreases α. First, if there exists an equivalence class S with
at least one incoming edge but no outgoing edges, then operation remove-incoming-edge
transfers allocation probability from nodes in S to all other nodes. This will remove all
incoming edges to S. If such an equivalence class does not exist, then Algorithm 3 finds a
special type of directed cycle in the ‘envy-with-slack’ graph. The directed cycle is chosen so
that the outgoing edge of each node i in the cycle is among i’s outgoing edges with minimal
weight. Therefore, each node i in the cycle is pointing to an i′ ∈ N for whom i has the least
slack. If there exists some node i∗ ∈ N which has an edge to some but not all of the nodes in
the cycle, then operation cycle-shift gives each node in the cycle half of its current allocation
and half of the next node’s allocation. This will remove an outgoing edge from i∗. If such
a node does not exist, then Algorithm 3 either decreases α to remove an edge or creates a
new equivalence class by merging all equivalence classes that the nodes in the cycle belong
to via operation average-clique.

However, such a merge may lead to envy, which is removed by Algorithm 4. Each call to
Algorithm 4 removes envy from at least one edge. Algorithm 4 does so by first carefully
redistributing allocation among the nodes until there exists a cycle where each node has
non-negative envy (which is equivalent to a cycle with non-positive slack). Each node in
the cycle is then given the allocation of the next node in the cycle. We prove that each call
to Algorithm 4 decreases the number of edges with envy, while not increasing the number
of edges in the ‘envy-with-slack’ graph. Furthermore, Algorithm 4 does not significantly
decrease the social welfare of the allocation.

The three operations and Algorithm 4 each take as input an allocation X and returns a new
allocation X ′ which is close in social welfare to X. Furthermore, each iteration begins with
an envy-free allocation, and the size of the edge set of the ‘envy-with-slack’ graphs never
increases throughout the algorithm. The maximum size of an equivalence class is n, so an
edge must be removed from the ‘envy-with-slack’ graph every n iterations. There are at most
n2 edges, and the algorithm therefore terminates in at most n3 iterations with an allocation
which satisfies Property 2. For the numerous details, see Appendix F.
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Lemma 2. The family of proportionality in expectation constraints satisfies Property 2.

Proof sketch. Define the slack Si of a player i for an allocation as the amount by which that
player’s value for their allocation is greater than their proportional value. In other words,
the slack is the amount of welfare a player can lose and still satisfy the proportionality
constraint. We construct the fractional allocation X ′ in one of two different ways depending
on the amount of total slack for the allocation Y µ across all n players.

If the amount of total slack across all n players is less than bnγ
a
, then we take X ′ = UAR.

Note that the total slack is equivalent to the change in social welfare between Y µ and UAR.
Therefore, because the total slack was less than bnγ

a
, the difference in social welfare between

Y µ and UAR is at most bnγ
a

which is O(γ). Furthermore, by definition the UAR allocation
satisfies option 2 of Property 2 for all constraints ℓ.

If the amount of total slack is greater than bnγ
a
, then we construct X ′ from Y µ by transferring

allocation away from players with slack greater than the required γ and redistributing this
allocation so that every player has slack of at least γ. Specifically, each player i loses ∆ik of
their allocation for item k, where

∆ik :=
Y µ
ik∑m

k′=1 Y
µ
ik′
· Si∑n

i′=1 Si′
· nγ
a
.

The allocation X ′ is then constructed as

X ′
ik := Y µ

ik −∆ik +
1

n

n∑
i′=1

∆i′k. (2)

Intuitively, this can be viewed as each player putting a part of their allocation (proportional
to Si ·γ) into a communal “pot.” The pot, consisting of

∑n
i′=1 ∆i′k for item k, is then divided

evenly among all n players to form X ′. By construction, no player loses more than Si social
welfare when the pot is created, and every player receives at least γ additional social welfare
when the pot is redistributed. Therefore, in the resulting allocation X ′, every player prefers
their allocation to their proportional value by at least γ, i.e. each player has a slack of at
least γ for X ′. Furthermore, the total difference in social welfare between Y µ and X ′ is
at most O(γ). We have thus shown that in both cases, X ′ will satisfy all of the desired
conditions. The full proof is relegated to Appendix E.

It will be useful to introduce two further properties that are immediately satisfied by the
definitions of envy-freeness in expectation and proportionality in expectation. Property 3
guarantees a form of Lipschitz continuity in µ for the constraints. This is unsurprising, as
the entries in the matrices Bℓ(µ) for both envy-freeness in expectation and proportionality in
expectation are linear in the entries of µ. Property 4 guarantees that the non-zero entries in
the constraint matrices stay the same for all values of µ, which follows directly from Remarks
1 and 2 and the fact that µik is bounded away from 0.

Property 3. There exists a K > 0 such that ∀µ1, µ2 ∈ [a, b]n×m and ∀ϵ > 0, if ∥µ1−µ2∥1 ≤ ϵ
then ∥Bℓ(µ

1)−Bℓ(µ
2)∥1 ≤ Kϵ.
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Observation 2. The envy-freeness in expectation and proportionality in expectation con-
straints satisfy Property 3.

Property 4. For all µ, µ′ ∈ [a, b]n×m, {i : Bℓ(µ)i ̸= 0} = {i : Bℓ(µ
′)i ̸= 0}.

Observation 3. The envy-freeness in expectation and proportionality in expectation con-
straints satisfy Property 4.

Recall that Property 2 implies that for every constraint ℓ, either the constraint ℓ has a slack
of at least γ for X ′ or every player involved in constraint ℓ is treated equally under allocation
X ′. A slack of γ in the constraint guarantees constraint satisfaction for all µ′ close to µ if
the constraints are continuous in µ. Treating every player equally for a given constraint also
guarantees that the constraints are satisfied for all µ′ by Property 1. Therefore, Properties
1 and 2 together with continuity (Property 3) imply that there exists a fractional allocation
X ′ such that the social welfare of X ′ is close to the social welfare of Y µ and such that X ′

not only satisfies the constraints for µ, but also satisfies the constraints for any µ′ close to µ.
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4 Algorithm and Regret Bounds

In this section, we present our main result, an explore-then-commit algorithm which achieves
Õ(T 2/3) regret while maintaining either proportionality in expectation or envy-freeness in
expectation. The key step in Algorithm 1 is the optimization in LP (3) to guarantee that
the fairness constraints are satisfied with high probability. For µ ∈ Rn×m

+ and ϵ ∈ Rn×m
+ , we

define the confidence region µ± ϵ = {µ′ ∈ Rn×m : µik− ϵik ≤ µ′
ik ≤ µik+ ϵik ∀i, k}. Note that

Algorithm 1 requires solving LPs with an infinite number of constraints, which we discuss
further in Section 6.

Algorithm 1 Fair Explore-Then-Commit

Require: n,m, T, {{(Bℓ(µ), cℓ)}Lℓ=1}µ
for t← 1 to T 2/3 − 1 do

At time t, use fractional allocation X t = UAR.
end for
Nik ←

∑T 2/3−1
τ=0 1kτ=k,iτ=i

µ̂ik ← 1
Nik

∑T 2/3−1
τ=0 1kτ=k,iτ=iViτ (jτ )

ϵik =
√

log2(4Tnm)/(2Nik)

X̂ ← Solution to the following LP:

max
X
⟨X, µ̂⟩F

s.t. ⟨Bℓ(µ), X⟩F ≥ cℓ ∀ℓ ∈ [L],∀µ ∈ µ̂± ϵ
n∑

i=1

Xik = 1 ∀k (3)

for t← T 2/3 to T − 1 do
At time t, use fractional allocation X t = X̂.

end for

Theorem 1. Suppose we are given n,m, T, a, b such that 0 < a ≤ µ∗
ik ≤ b for all i ∈ [n], k ∈

[m]. If {{(Bℓ(µ), cℓ)}Lℓ=1}µ = {efe(µ)}µ or {{(Bℓ(µ), cℓ)}Lℓ=1}µ = {pe(µ)}µ, then Algorithm
1 with probability 1 − 1/T satisfies the constraints {(Bℓ(µ

∗), cℓ)}Lℓ=1 and achieves regret of
Õ(T 2/3) for constraints {(Bℓ(µ

∗), cℓ)}Lℓ=1.

Proof sketch. We have already shown in Section 3 that both envy-freeness in expectation and
proportionality in expectation satisfy Properties 1, 2, 3, and 4. Therefore, it suffices to show
that Algorithm 1 achieves Õ(T 2/3) regret for any family of constraints {{(Bℓ(µ), cℓ)}Lℓ=1}µ
that satisfies Properties 1, 2, 3, and 4.

The allocations used during the warm-up steps of Algorithm 1 are uniform at random,
and therefore these allocations satisfy the constraints {(Bℓ(µ), cℓ)}Lℓ=1 for all µ by Property
1. Because the fractional allocations used in the first T 2/3 steps are all UAR, each arm,
or (player, item) pair, will be sampled with probability 1

nm
at each step. This implies
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by Hoeffding’s inequality that with high probability, Nik = Ω̃(T 2/3) for all i, k. The i, k
entry in the ϵ matrix is proportional to 1√

Nik
, and therefore ∥ϵ∥1 = Õ(T−1/3) with high

probability. Because the value distributions are sub-Gaussian, a standard application of
Hoeffding’s inequality also gives that with high probability, the true mean matrix will be
within our confidence region, i.e. µ∗ ∈ µ̂± ϵ. To summarize, because we used UAR for the
first T 2/3 steps, we have that

Pr
(
∥ϵ∥1 ≤ Õ(T−1/3), µ∗ ∈ µ̂± ϵ

)
≥ 1− 1

T
.

For the rest of the proof we will assume that the high probability event in the equation
above holds. The next step is to show that X̂ has ∥ϵ∥1 per-step regret compared to Y µ∗

.
Let K be the Lipschitz constant of Property 3. Using Property 2 with µ = µ∗ and γ =
2K∥ϵ∥1 = Õ(T−1/3) gives that there exists an allocation X ′ such that the social welfare of
X ′ is only O(∥ϵ∥1) less than the social welfare of the optimal allocation Y µ∗

and such that
every constraint ℓ either has slack of at least 2K∥ϵ∥1 (option 1 of Property 2) or every player
is treated equally in constraint ℓ (option 2 of Property 2). We will now show that X ′ is a
solution to LP (3). If option 1 holds for constraint ℓ ∈ [L], then by Property 3, X ′ will satisfy
the constraint (Bℓ(µ), cℓ) for every µ ∈ µ̂ ± ϵ. Formally, if option 1 holds for constraint ℓ,
then for any µ ∈ µ̂± ϵ,

⟨Bℓ(µ), X
′⟩F = ⟨Bℓ(µ), X

′⟩F − ⟨Bℓ(µ
∗), X ′⟩F + ⟨Bℓ(µ

∗), X ′⟩F
= ⟨Bℓ(µ)−Bℓ(µ

∗), X ′⟩F + ⟨Bℓ(µ
∗), X ′⟩F

≥ ⟨Bℓ(µ
∗), X ′⟩F − ∥Bℓ(µ)−Bℓ(µ

∗)∥1 [0 ≤ X ′
ik ≤ 1, ∀i, k]

≥ ⟨Bℓ(µ
∗), X ′⟩F − 2K∥ϵ∥1 [Property 3]

≥ cℓ. [Property 2: option 1]

If option 2 holds for constraint ℓ ∈ [L], then Properties 1 and 4 together guarantee that X ′

will satisfy the constraint (Bℓ(µ), cℓ) for every µ ∈ µ̂± ϵ. Therefore, X ′ will satisfy all of the
constraints {Bℓ(µ), cℓ}Lℓ=1 for every µ ∈ µ̂± ϵ, which implies that X ′ is a solution to LP (3).

Finally, because X̂ is the optimal solution to LP (3), X̂ must have higher social welfare
than X ′ under means µ̂. Because ∥µ∗ − µ̂∥1 ≤ ∥ϵ∥1, this implies that X̂ must have at most
O(∥ϵ∥1) less social welfare than X ′ under the true means µ∗. An application of the triangle
inequality gives that,

⟨Y µ∗
, µ∗⟩F − ⟨X̂, µ∗⟩F = ⟨Y µ∗

, µ∗⟩F − ⟨X ′, µ∗⟩F + ⟨X ′, µ∗⟩F − ⟨X̂, µ∗⟩F
= Õ (∥ϵ∥1 + ∥ϵ∥1)
= Õ(T−1/3).

Thus, the total regret for the steps after the warm-up period is Õ(T 2/3). The regret of the
warm-up period is at most (b − a)T 2/3 due to the assumption that the mean values are
bounded. We can therefore conclude that the total regret is Õ(T 2/3), and this completes
the proof of regret. Finally, we note that by construction of LP (3), if µ∗ ∈ µ̂ ± ϵ then the
chosen fractional allocations X̂ must also satisfy the constraints {(Bℓ(µ

∗), cℓ)}Lℓ=1 as desired.
See Appendix D for the full proof.
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5 Lower bounds

The following lower bound shows that Theorem 1 is tight up to log factors. An equivalent
result holds for proportionality, with the same proof.

Theorem 2. There exists a, b, n,m such that no algorithm can, for all µ∗ ∈ [a, b]n×m, both

satisfy the envy-freeness constraints and achieve regret of less than T 2/3

log(T )
with probability at

least 1− 1/T . The same is true for the proportionality constraints.

Proof sketch. We defer the formal proof to Appendix G and provide brief intuition here.

Suppose there are two item types and two players. In this case envy-freeness and propor-
tionality are equivalent, and therefore we will focus on the former. Consider the following
two mean value matrices.

µ1 =

[
2 3
1 1

]
µ2 =

[
2 3
1 1 + T−1/3

]
We will show that no algorithm can with probability 1 − 1/T achieve regret of less than
Ω̃(T 2/3) and satisfy envy-freeness in expectation for both of these distributions. First, note
that the expected social welfare maximizing allocation for µ1 is to give all items of type 1
to player 2 and all items of type 2 to player 1. On the other hand, any envy-free allocation
for µ2 must give Ω̃(T−1/3) fraction of items of type 2 to player 2. This implies that if an
algorithm is unable to distinguish between µ1 and µ2, then either the regret will be Ω̃(T 2/3)
for µ1 or the algorithm will not be envy-free for µ2.

Therefore, any algorithm that has regret of less than Ω̃(T 2/3) and satisfies envy-freeness for
both µ1 and µ2 must distinguish betwen µ1 and µ2. The only way to do this is to allocate
at least Ω̃(T 2/3) items of type 2 to player 2. However, this will result in regret under µ1 of
Ω̃(T 2/3).

6 Discussion

We conclude by discussing some limitations and open questions. First, Algorithm 1 involves
solving a linear program with an infinite number of linear constraints. Linear programs
with an infinite number of constraints (called semi-infinite programs) are well-studied and
occur in many applications [16, 24]. We also note that a finite number of (exponentially
many) constraints suffices for envy-freeness in expectation and proportionality in expecta-
tion by bounding all of the possible extreme values of ϵ. Nevertheless, we opted to avoid
this representation because it significantly complicates the presentation of the algorithm.
Furthermore, there also exists a polynomial time separation oracle for determining whether
an allocation satisfies the infinitely many constraints, which would allow techniques such as
the Ellipsoid Method [6] to solve the linear program in polynomial time.

Second, while the regret coefficients for proportionality are polynomial in n, a practical
limitation of Algorithm 1 for envy-freeness is that the Õ term is exponential in n. We expect,
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however, that the worst-case bound we present in Lemma 1 is far from tight. Whether there
exists a bound on the regret that is polynomial in n for learning under envy-freeness in
expectation constraints is an open question for future work.

The other natural question that remains open for future work is whether we can achieve
Õ(
√
T ) regret while maintaining envy-freeness in expectation or proportionality in expec-

tation. If the optimal solution Y µ∗
has a positive slack in every constraint, then an upper

confidence bound (UCB) approach would be likely to work. Unfortunately, the fairness con-
straints for envy-freeness in expectation and proportionality in expectation are often tight
for the optimal allocation. Furthermore, the constraints have a constant (greater than 1/n)
dependence on every unknown value in the µ∗ matrix. Therefore, every mean value µ∗

ik might
need to be learned with high accuracy even if the optimal allocation does not allocate item
type k to player i.

We also note that there exist additional (albeit less prominent) fairness notions for the
problem of online fair division, such as equitability, which may satisfy additional properties
that allow for lower regret. We leave the question of studying more fairness notions for future
work.

Finally, a broader question is whether the connection we have established between multi-
armed bandits and online fair division might be leveraged to give a fresh perspective on
additional problems in this area, such as online cake cutting [31].
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A Algorithmic Representation of Model

Algorithm 2 [Online Item Allocation]

Require: ALG
1: ∀i, A0

i ← {}, H0 ← {}
2: for t← 1 to T do
3: Xt ← ALG(Ht)
4: kt ∼ D
5: Generate item jt of type kt (i.e. Vi(jt) ∼ N(µ∗

ikt
, 1), ∀i ∈ N )

6: it ← Sample from (Xt)
⊤
kt

7: At
it = At−1

it
+ {jt}

8: Ht ← Ht−1 + (kt, it, Vit(jt))
9: end for
10: return A = (AT

1 , A
T
2 , ..., A

T
n )

B Motivating Fairness in Expectation

In this section, we will explore the relationship between envy-freeness in expectation and
realized envy, as well as the relationship between requiring envy-freeness in expectation at
every time step and only requiring envy-freeness in expectation at the end of round T .
For this section, we will use the following notation. For any algorithm ALG, we denote
Xt = ALG(Ht) as the fractional allocation used at time t, and PrALG(i, k,Ht) := (Xt)ik.

Previous works on fair online allocation of indivisible goods have focused on the fairness of
the final, realized allocation instead of studying fairness in expectation as in Definitions 1
and 2 [5]. We define the realized envy of an allocation below.

Definition 4. The realized envy of allocation A at time τ is maxi,i′ Vi(A
τ
i′)− Vi(A

τ
i ).

We show in the following theorems that algorithms which are envy-free in expectation are
within a log(T ) factor of being “optimal” in terms of final realized envy. Informally, Theorem
3 shows that in our setting, no algorithm can with high probability output an allocation
A(ALG) with realized envy less than

√
t. Conversely, Theorem 4 shows that any algorithm

ALG that satisfies envy-freeness in expectation will output a final allocation A(ALG) with
realized envy of at most

√
T log(T ) with high probability.

Theorem 3. Suppose µ∗ is known. For any algorithm ALG and for any τ ∈ [T ], with
probability at least 1/16 the allocation Aτ (ALG) has realized envy of more than

√
τ .

Proof. Assume there are two players and only one item type, and assume that all values are
drawn from N (µ, 1). Fix τ ≥ log2(T ). As in Algorithm 2, define it ∈ {1, 2} as the player
allocated the item at time t. The realized envy of the two players can be written as:

Realized Envy of Player 1 at time τ =

(
τ∑

t=0

1it=1 · V1(jt)

)
−

(
τ∑

t=0

1it=2 · V1(jt)

)
(4)
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Realized Envy of Player 2 at time τ =

(
τ∑

t=0

1it=2 · V2(jt)

)
−

(
τ∑

t=0

1it=1 · V2(jt)

)
. (5)

Let vai be the value of the assigned player for item i, and vui be the value of the unassigned
player for item i. Note that vai , v

u
i ∼ N(µ, 1), because at the time of allocation, ALG does

not know either player’s value for the item, and player values are therefore independent of
the assignment.

By this coupling argument, Equations (4) and (5) can be rewritten as:

Realized Envy of Player 1 at time τ =

(
τ∑

t=0

1it=1 · vai

)
−

(
τ∑

i=0

1it=2 · vui

)
(6)

Realized Envy of Player 2 at time τ =

(
τ∑

t=0

1it=2 · vai

)
−

(
τ∑

t=0

1it=1 · vui

)
. (7)

By the Central Limit Theorem,
∑τ

i=0 v
a
i and

∑τ
i=0 v

u
i are both N(τ · µ, τ). Therefore, for

any τ , with probability at least 1/16, we have that

τ∑
t=0

vat ≤ τµ−
√
τ and

τ∑
t=0

vut ≥ τµ+
√
τ .

Putting these equations together, we have that

τ∑
t=0

vat + 2
√
τ ≤

τ∑
t=0

vut .

However, this result with Equations (6) and (7) implies that the envy must be at least
√
τ

for any choice of {it}. Therefore, we have shown that with probability at least 1/16, the
envy at time τ will be at least

√
τ for any possible algorithm.

Theorem 4. Suppose µ∗ is known. Also assume that all of the value distributions are
bounded by a constant B. If ALG is deterministic (i.e. ALG(Ht) is a deterministic function
of Ht) and satisfies envy-freeness in expectation, then with probability 1−o(1/T ), the realized
envy of Aτ (ALG) at every time τ ∈ [T ] is at most

√
τ log(T ).

Proof. We will bound the realized envy of A(ALG) between any two specific players i, i′,
which will then imply a bound on the realized envy of A(ALG) by a union bound. The
key observation is that each round of Algorithm 2 consists of first a random draw from D
to determine the item type kt and then a draw from ξt ∼ Unif([0, 1]) which determines the
player to which the item is allocated based on Xt = ALG(Ht). Formally, the tth item is
allocated to player i if

ξt ∈

[
i−1∑
i′′=1

(Xt)i′′kt ,

i∑
i′′=1

(Xt)i′′kt

]
.
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Define {vti′′}ni′′=1 as the values of the players for the item at time t. This is the final source
of randomness in round t. Therefore, the allocation of any player at time τ is a function of
the random variable sequence {(kt, ξt, {vti′′}ni′′=1)}τ−1

t=0 .

Let Eτ represent the envy accrued by player i for player i′ up until but not including time
τ . Then

Eτ =
τ−1∑
t=0

vti ·
m∑
k=1

1kt=k ·
(
1
ξt∈[

∑i′−1
s=1 (Xt)skt ,

∑i′
s=1(Xt)skt ]

− 1ξt∈[
∑i−1

s=1(Xt)skt ,
∑i

s=1(Xt)skt ]

)
:= f

(
{(kt, ξt, {vti′′}ni′′=1)}τ−1

t=0

)
.

Now we will apply McDiarmid’s inequality to the function f
(
{(kt, ξt, {vti′′}ni′′=1)}τ−1

t=0

)
. First,

we show that the bounded condition is satisfied. If {(kt, ξt, {vti′′}ni′′=1)}τ−1
t=0 and {(k′

t, ξ
′
t, {v′ti′′}ni′′=1)}τ−1

t=0

differ only at the sth element for any s ∈ [0, τ − 1], then∣∣f ({(kt, ξt, {vti′′}ni′′=1)}τ−1
t=0

)
− f

(
{(k′

t, ξ
′
t, {vti′′}ni′′=1)}τ−1

t=0

)∣∣ ≤ B.

Therefore, we can apply McDiarmid’s inequality to get that

Pr
(∣∣f ({(kt, ξt, {vti′′}ni′′=1)}τ−1

t=0

)
− E

[
f
(
{(kt, ξt, {vti′′}ni′′=1)}τ−1

t=0

)]∣∣ ≥ √τ log(T )) ≤ e− log2(T )/(2B2)

≤ T− log(T )/(2B2).

Since ALG is envy-free in expectation, we know that E
[
f
(
{(kt, ξt, {vti′′}ni′′=1)}τ−1

t=0

)]
≤ 0.

Therefore, we must have that

Pr
(
f
(
{(kt, ξt, {vti′′}ni′′=1)}τ−1

t=0

)
≥
√
τ log(T )

)
≤ T− log(T )/(2B2).

Taking a union bound over all pairs i, i′ and all τ ∈ [T ], we have that

Pr(∃τ : Realized envy at time τ is ≥
√
τ log(T ) ) ≤ n2T · T−2 log(T )/b2 = o(1/T ).

Therefore, with probability 1−o(1/T ), the realized envy at evert time τ is at most
√
τ log(T ).

Note that Theorem 3 does not contradict the results of Benadè et al. [5], who achieve envy-
freeness of the realized allocation with high probability when the true player values for the
items are known at time of allocation (as opposed to our model which only knows the item
type). When player values for item jt are known before assignment, Theorem 3 does not
apply.

We also defined envy-freeness in expectation as a constraint which needs to hold at every
time step t. In some fair division applications, we may only care about “fairness” of the
total allocation at the end of the process. Therefore, we could instead only require that no
player is envious in expectation of any other player at the end of all T rounds. However,
Theorem 5 shows that this is equivalent to maintaining envy-freeness in expectation at all
times t ∈ [T ] when maximizing social welfare.
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Theorem 5. Suppose µ∗ is known. Let E be the class of all algorithms that are envy-free in
expectation and let F be the class of all algorithms which satisfy E[Vi(A

T
i )] ≥ max

i′∈[n]
E[Vi(A

T
i′ )]

for all i. Then
max

ALG∈F
E[sw(A(ALG))] = max

ALG∈E
E[sw(A(ALG))].

Proof. By definition, E ⊆ F , which proves one direction of the desired equality. We will now
show that for any ALG ∈ F , there exists an algorithm ALG′ ∈ E such that

E[sw(A(ALG′))] = E[sw(A(ALG))].

First, observe that by the definition of F , we have that for all i, i′,

1

T
E

∑
t∈[T ]

∑
k

Pr
ALG

(i, k,Ht)µik Pr
D
(k)

 ≥ 1

T
E

∑
t∈[T ]

∑
k

Pr
ALG

(i′, k,Ht)µik Pr
D
(k)

 . (8)

By linearity of expectation, Equation (8) is equivalent to

1

T

∑
t∈[T ]

∑
k

∫
Ht

Pr
ALG

(i, k,Ht)dHt · µik Pr
D
(k) ≥ 1

T

∑
t∈[T ]

∑
k

∫
Ht

Pr
ALG

(i′, k,Ht)dHt · µik Pr
D
(k). (9)

Furthermore, by definition

E[sw(ALG)] = E

 n∑
i=1

∑
t∈[T ]

∑
k

Pr
ALG

(i, k,Ht)µik Pr
D
(k)


=

n∑
i=1

∑
t∈[T ]

∑
k

∫
Ht

Pr
ALG

(i, k,Ht)dHt · µik · Pr
D
(k)

=
n∑

i=1

∑
k

∑
t∈[T ]

∫
Ht

Pr
ALG

(i, k,Ht)dHt

 · µik · Pr
D
(k).

We will construct the algorithm ALG′ as follows. Suppose ALG′ is time-independent and
history-independent, such that for all t,Ht,

Pr
ALG′

t

(i, k,Ht) =
1

T

∑
s∈[T ]

∫
Pr

ALGs

(i, k,Hs)dHs.

The expected social welfare of ALG′ is

E[sw(ALG′)] = E

 n∑
i=1

∑
t∈[T ]

∑
k

Pr
ALG′

t

(i, k,Ht)µik Pr
D
(k)


= E

 n∑
i=1

∑
t∈[T ]

∑
k

1

T

∑
s∈[T ]

∫
Pr

ALGs

(i, k,Hs)dHs · µik · Pr
D
(k)


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= E

 n∑
i=1

∑
k

∑
s∈[T ]

∫
Pr

ALGs

(i, k,Hs)dHs

 · µik · Pr
D
(k)


= E[sw(ALG)].

Therefore, ALG and ALG′ have the same expected social welfare. Finally, we need to show
that ALG′ ∈ E . This is equivalent to showing that for all t and Ht,∑

k

Pr
ALG′

t

(i, k,Ht)µik Pr
D
(k) ≥

∑
k

Pr
ALG′

t

(i′, k,Ht)µik Pr
D
(k).

Starting with the LHS and plugging in the definition of ALG′, we have that∑
k

Pr
ALG′

t

(i, k,Ht)µik Pr
D
(k) =

∑
k

1

T

∑
s∈[T ]

∫
Pr

ALGs

(i, k,Hs)dHsµik Pr
D
(k)

=
1

T

∑
k

∑
s∈[T ]

∫
Pr

ALGs

(i, k,Hs)dHsµik Pr
D
(k)

≥ 1

T

∑
k

∑
s∈[T ]

∫
Pr

ALGs

(i′, k,Hs)dHsµik Pr
D
(k) [Equation (9)]

=
∑
k

1

T

∑
s∈[T ]

∫
Pr

ALGs

(i′, k,Hs)dHsµik Pr
D
(k)

=
∑
k

Pr
ALG′

t

(i′, k,Ht)µik Pr
D
(k),

as desired. Therefore, we have shown that ALG′ ∈ E .

Theorem 6. The algorithm which maximizes expected social welfare subject to EFE up to
time T is time-independent, history-independent, and can be calculated in polynomial time.

Proof. By Theorem 5, there exists an optimal algorithm that satisfies envy-freeness in ex-
pectation and that is time-independent and history-independent. To find the best such
fractional allocation, all we must do is solve LP (1) with the envy-freeness in expectation
constraints.

B.1 Proportionality

Theorems 3–6 also have equivalent forms for proportionality. We define the realized propor-
tionality gap as the equivalent of envy for the proportionality constraints. This implies that
a proportional allocation has non-positive proportionality gap.

Definition 5. The realized proportionality gap of allocationA at time τ is maxi
1
n

∑
i′ Vi(A

τ
i′)−

Vi(A
τ
i ).

As in Theorems 3 and 4 , the following two results give that algorithms which satisfy propor-
tionality in expectation are within a log(T ) factor of optimal for the realized proportionality
gap.
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Theorem 7. Suppose µ∗ is known. For any algorithm ALG and for any τ ∈ [T ], with
probability at least 1/16 the allocation Aτ (ALG) has realized proportionality gap of more
than

√
τ .

Proof. As in the proof of Theorem 3, assume there are two players and only one item type,
and assume that all values are drawn from N (µ, 1). Then the realized proportionality gap
of the two players can be written as:

Realized proportionality gap of Player 1 at time τ =
1

2

(
τ∑

t=0

1it=1 · V1(jt)

)
−1

2

(
τ∑

t=0

1it=2 · V1(jt)

)
(10)

Realized proportionality gap of Player 2 at time τ =
1

2

(
τ∑

t=0

1it=2 · V2(jt)

)
−1

2

(
τ∑

t=0

1it=1 · V2(jt)

)
(11)

These equations only differ from those of realized envy by a scalar factor, and therefore the
rest of the proof follows exactly as in Theorem 3.

Theorem 8. Suppose µ∗ is known. Also assume that all of the value distributions are
bounded by a constant B. If ALG is deterministic (i.e. ALG(Ht) is a deterministic function
of Ht) and satisfies proportionality in expectation, then with probability 1 − o(1/T ), the
realized proportionality gap of Aτ (ALG) at every time τ ∈ [T ] is at most

√
τ log(T ).

Proof. In this proof, we can let Et be the accrued “proportionality gap” of any player i.
Then as in Theorem 4, an application of McDiarmid’s inequality allows us to bound the
realized proportionality gap with high probability for all τ .

The following two theorems are analogs of Theorem 5 and Theorem 6 for envy-freeness
in expectation. Together, these theorems imply that maximizing social welfare subject to
proportionality in expectation at every time step is equivalent to maximizing social welfare
subject to proportionality in expectation only at the end of round T .

Theorem 9. Suppose µ∗ is known. Let E be the class of all algorithms that are propor-
tional in expectation and let F be the class of all algorithms which satisfy E[Vi(A

T
i )] ≥

1

n

∑
i′∈[n]

E[Vi(A
T
i′ )] for all i. Then

max
ALG∈F

E[sw(A(ALG))] = max
ALG∈E

E[sw(A(ALG))].

Proof. Suppose ALG ∈ F . We will define ALG′ as in Theorem 5 to be

Pr
ALG′

t

(i, k,Ht) =
1

T

∑
s∈[T ]

∫
Pr

ALGs

(i, k,Hs)dHs.

By this construction, ALG′ ∈ E because∑
k

Pr
ALG′

t

(i, k,Ht)µik Pr
D
(k)
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=
∑
k

1

T

∑
s∈[T ]

∫
Pr

ALGs

(i, k,Hs)dHsµik Pr
D
(k)

=
1

T

∑
k

∑
s∈[T ]

∫
Pr

ALGs

(i, k,Hs)dHsµik Pr
D
(k)

≥ 1

Tn

n∑
i′=1

∑
k

∑
s∈[T ]

∫
Pr

ALGs

(i′, k,Hs)dHsµik Pr
D
(k) [ALG ∈ F ]

=
n∑

i′=1

∑
k

1

Tn

∑
s∈[T ]

∫
Pr

ALGs

(i′, k,Hs)dHsµik Pr
D
(k)

=
1

n

n∑
i′=1

∑
k

Pr
ALG′

t

(i′, k,Ht)µik Pr
D
(k).

Because E ⊆ F and because we showed in Theorem 5 that ALG′ and ALG have the same
expected social welfare, the desired result follows.

Theorem 10. The algorithm which maximizes expected social welfare subject to PE up to
time T is time-independent, history-independent, and can be calculated in polynomial time.

Proof. By Theorem 9, there exists an optimal algorithm that satisfies proportionality in
expectation that is time-independent and history-independent. To find the best such frac-
tional allocation, all we must do is solve LP (1) with the proportionality in expectation
constraints.

C Additional Model Notes

C.1 Choice of D
In the body of the paper, we focus on the case when D is the uniform distribution over item
types. However, our results generalize to any distribution D which does not depend on T .
In this case, the social welfare of a fractional allocation X becomes

∑
i,k Xik PrD(k)µik. For

a matrix ν ∈ Rn×m, define fD(ν) = ν ′ ∈ Rn×m, where ν ′
ik = n ·PrD(k) · µik. For mean values

µ∗, define µ′ = fD(µ
∗). Then social welfare of a fractional allocation X with means µ∗ and

distribution D is then simply 1
n
⟨X,µ′⟩F as in the uniform D case. Similarly, the envy-freeness

in expectation or proportionality in expectation constraints on X with means µ∗ and item
distribution D can be represented as ⟨Bℓ(µ

′), X⟩F ≥ cℓ, which is an equivalent form to the
constraints when D is uniform. Therefore, for arbitrary D we can use Algorithm 1 with only
two slight modifications. The first is we must transform the µ̂, µ, and other components of
the linear programs using the function fD. The second modification is that we potentially
need more exploration steps (larger T ) in the warm-up period to guarantee the same level
of estimation of µ∗, depending on the value of mini,k PrD(k). However, since we require that
D does not depend on T , this will not change the overall regret of the algorithm.
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C.2 Lower Bound on Means

In this section, we show that if the means of player values can be arbitrarily close to zero,
then it can be impossible to achieve a regret of o(T ).

Theorem 11. For ϵ > 0, there does not exist an algorithm ALG such that for any possible
µ∗ ∈ [0, ϵ]n×m, for every t the fractional allocation Xt chosen by ALG satisfies envy-freeness
in expectation with probability greater than 1/2 and the regret of ALG is o(T ). The same
result also holds for proportionality in expectation.

Proof. W.l.o.g. assume that ϵ = 1. The proof also holds for any other constant ϵ. Suppose
the underlying value distributions are Bernoulli, that we have two players and two item
types, and assume T ≥ 2. We will consider two cases for µ∗ and show that no algorithm can
with probability greater than 1/2 satisfy the constraints and have regret of o(T ) for both of
these cases of µ∗.

First, let

µ1 =

[
1/T 2 0
1 0.5

]
and

µ2 =

[
0 1/T 2

1 0.5

]
.

If µ∗ = µ1 or µ∗ = µ2, then player 1 will not have a realized value of 1 for any of the T items
with probability at least 1/2. Therefore, no algorithm can differentiate between µ∗ = µ1 and
µ∗ = µ2 with probability at least 1/2. The only fractional allocation that is envy-free for
both µ∗ = µ1 and µ∗ = µ2 is the uniform at random allocation. However, this allocation has
regret of Ω(T ) for µ∗ = µ2, as the best fractional allocation when µ∗ = µ2 is the fractional
allocation

Y µ2

=

[
0 0.5
1 0.5

]
.

This proves the desired result that no algorithm can be envy-free for µ∗ and have o(T ) regret
for both possible realizations of µ∗. Similarly, the uniform at random allocation is the only
proportional allocation in this example, and therefore the same result holds.

D Proof of Theorem 1

Observations 1, 2, and 3 give that the proportionality in expectation constraints and the
envy-freeness in expectation constraints satisfy Properties 1, 3, and 4 respectively. Lemmas
1 and 2 respectively give that the proportionality in expectation constraints and the envy-
freeness in expectation constraints satisfy Property 2. These results combined with Lemma
3 directly prove Theorem 1.

Lemma 3. Let
{
{(Bℓ(µ), cℓ)}Lℓ=1

}
µ∈[a,b]n×m be a family of constraints that satisfy Prop-

erties 1, 3, 4, and 2. Then with probability 1 − 1/T , Algorithm 1 satisfies constraints
{(Bℓ(µ

∗), cℓ)}Lℓ=1 and has regret of Õ(T 2/3) for constraints {(Bℓ(µ
∗), cℓ)}Lℓ=1.
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Proof. First, we note that the regret of the first T 2/3 steps can be bounded by

T 2/3−1∑
t=0

⟨Y µ∗
, µ∗⟩F − ⟨Xt, µ

∗⟩F ≤ T 2/3(b− a) = O(T 2/3). (12)

By Property 1, the uniform at random allocation satisfies constraints {(Bℓ(µ), cℓ}Lℓ=1. There-
fore, Xt satisfies the constraints for all t < T 2/3. Furthermore, because the fractional al-
location was uniform at random for the first T 2/3 steps, we have that for sufficiently large
T ,

Pr

(
∥ϵ∥1 ≤ nm

√
nm log2(4nmT ) · T−1/3

)
≥ Pr

(
∀i ∈ [n], k ∈ [m], ϵik ≤

√
nm log2(4nmT ) · T−1/3

)
= Pr

(
∀i ∈ [n], k ∈ [m], Nik ≥

T 2/3

2nm

)
= Pr

(
∀i ∈ [n], k ∈ [m], Nik ≥

T 2/3

nm
− T 2/3

2nm

)
≥ Pr

(
∀i ∈ [n], k ∈ [m], Nik ≥

T 2/3

nm
−
√

log(4nmT ) · T 1/3

)
≥ 1− nme−2 log(4nmT )

≥ 1− 1

2T
, (13)

where the second to last inequality is by Hoeffding’s Inequality and a union bound. This
implies that with probability 1− 1

2T
, ∥ϵ∥1 = Õ(T−1/3). Because the values are drawn from a

Sub-Gaussian distribution, there exists a constant c > 0 (which depends on the distribution
of the values) such that by Hoeffding’s inequality,

Pr (∀i ∈ [n], k ∈ [m], |µ̂ik − µ∗
ik| ≤ ϵik) ≥ 1− 2nme−c log2(4nmT )

≥ 1− 2nm

(
1

4nmT

)c log(4nmT )

≥ 1− 1

2T
. [For sufficiently large T ]

(14)

For the rest of this proof, we will assume that

∥ϵ∥1 ≤ Õ(T−1/3) (15)

and
∀i ∈ [n], k ∈ [m], |µ̂ik − µ∗

ik| ≤ ϵik, (16)

which by Equations (13) and (14) happens with probability 1− 1/T .
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If K is the Lipschitz constant for this family of constraints, then by Equation (15), 2K∥ϵ∥1 ≤
Õ(T−1/3) ≤ γ0 for sufficiently large T , where γ0 is from Property 2. Therefore, taking
γ = 2K∥ϵ∥1 in Property 2 gives that there exists some fractional allocation X ′ such that

|⟨µ∗, Y µ∗⟩F − ⟨µ∗, X ′⟩F | ≤ O(∥ϵ∥1), (17)

and such that for every constraint ℓ ∈ [L], either ∀i1, i2 ∈ {i : Bℓ(µ
∗)i ̸= 0}, X ′

i1
= X ′

i2
or

⟨Bℓ(µ
∗), X ′⟩F ≥ cℓ + 2K∥ϵ∥1. (18)

For any µ ∈ µ̂ ± ϵ, we have that ∥µ − µ∗∥1 ≤ 2∥ϵ∥1 by Equation (16) and the triangle
inequality. By the Lipschitz continuity assumption (Property 3), this implies that for all
µ ∈ µ̂± ϵ,

∥Bℓ(µ)−Bℓ(µ
∗)∥1 ≤ 2K∥ϵ∥1. (19)

Therefore, if Equation (18) holds for a constraint ℓ, then for any µ ∈ µ̂± ϵ,

⟨Bℓ(µ), X
′⟩F = ⟨Bℓ(µ), X

′⟩F − ⟨Bℓ(µ
∗), X ′⟩F + ⟨Bℓ(µ

∗), X ′⟩F
= ⟨Bℓ(µ)−Bℓ(µ

∗), X ′⟩F + ⟨Bℓ(µ
∗), X ′⟩F

≥ ⟨Bℓ(µ
∗), X ′⟩F − ∥Bℓ(µ)−Bℓ(µ

∗)∥1 [0 ≤ X ′
ik ≤ 1, ∀i, k]

≥ ⟨Bℓ(µ
∗), X ′⟩F − 2K∥ϵ∥1 [Equation (19)]

≥ cℓ. [Equation (18)]

Therefore, we have shown that if Equation (18) holds for a constraint ℓ, then the fractional
allocation X ′ satisfies constraint (Bℓ(µ), cℓ) for all µ ∈ µ̂± ϵ. If Equation (18) does not hold
for a constraint ℓ, then ∀i1, i2 ∈ {i : Bℓ(µ

∗)i ̸= 0}, X ′
i1
= X ′

i2
. Because {i : Bℓ(µ

∗)i ̸= 0} =
{i : Bℓ(µ)i ̸= 0} by Property 4, this implies by Property 1 that ⟨Bℓ(µ), X

′⟩F ≥ cℓ for all µ.
Therefore, we have shown that X ′ satisfies {(Bℓ(µ), cℓ)}Lℓ=1 for all µ ∈ µ̂ ± ϵ, and thus X ′

satisfies the constraints in LP (3).

Because X̂ is the optimal solution to LP (3), we have that

⟨X ′, µ̂⟩F ≤ ⟨X̂, µ̂⟩F .

By Equation (16), this implies that

⟨X ′, µ∗⟩F − ⟨X̂, µ∗⟩F ≤ ∥ϵ∥1. (20)

Therefore,

⟨Y µ∗
, µ∗⟩F − ⟨X̂, µ∗⟩F = ⟨Y µ∗

, µ∗⟩F − ⟨X ′, µ∗⟩F + ⟨X ′, µ∗⟩F − ⟨X̂, µ∗⟩F
≤ O (∥ϵ∥1 + ∥ϵ∥1) [Equations (17) and (20)]

≤ Õ(T−1/3). [Equation (15)]
(21)

Combining with Equation (12), this gives a total regret of

T−1∑
t=0

(
⟨Y µ∗

, µ∗⟩F − ⟨X t, µ∗⟩F
)
≤ O(T 2/3) +

T∑
t=T 2/3

(
⟨Y µ∗

, µ∗⟩F − ⟨X t, µ∗⟩F
)

[Equation (12)]
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= O(T 2/3) + T · Õ(T−1/3) [Equation (21)]

= Õ(T 2/3).

Lastly, we must show that the constraints are satisfied by the fractional allocation used by
the algorithm for t ≥ T 2/3. This is because if Equation (16) holds, then any solution to
LP (3) must satisfy the constraints {(Bℓ(µ

∗), cℓ}Lℓ=1, and therefore the fractional allocation
used by the algorithm for all t ≥ T 2/3 will satisfy these constraints. Recall that all of the
above relies on Equations (16) and (15) holding, which happens with probability 1− 1/T as
desired.

E Proof of Lemma 2

For proportionality in expectation, LP (1) can be rewritten as the following linear program.

Y µ := argmax ⟨X,µ⟩F

s.t. Xi · µi −
1

n
∥µi∥1 ≥ 0 ∀i ∈ [n]∑

i

Xik = 1 ∀k (22)

In order to show that the proportionality constraints satisfy Property 2, we want to construct
an X ′ such that

1. X ′ decreases the social welfare relative to Y µ by O(γ) and

2. For every constraint i ∈ [n], either X ′ = UAR or

X ′
i · µi −

1

n
∥µi∥1 ≥ γ. (23)

LP (22) has n constraints, one corresponding to each player. Define

Si = Y µ
i · µi −

1

n
∥µi∥1. (24)

Si is the slack on the ith constraint when using the optimal solution Y µ. Now we have two
cases depending on

∑n
i=1 Si, the total amount of slack across all n players.

Case 1:
∑n

i=1 Si ≤ b
a
nγ

Let X ′ = UAR. This will result in an decrease of social welfare of at most b
a
nγ compared to

Y µ. To see why, note that the slack of constraint i is equivalent to how much player i prefers
their fractional allocation in Y µ to UAR. Therefore, switching to UAR from Y µ decreases
the total social welfare by Si per player, and therefore decreases the total social welfare
by
∑n

i=1 Si ≤ b
a
nγ = O(γ). Furthermore, X ′ = UAR clearly satisfies the other condition

because every player is treated equally.
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Case 2:
∑n

i=1 Si >
b
a
nγ

Intuitively, in this case we want to redistribute the slack from the constraints with a lot of
slack to the constraints without much slack. To do this, construct X ′ as follows. Define

∆ik :=
Y µ
ik∑m

k′=1 Y
µ
ik′
· Si∑n

i′=1 Si′
· nγ
a
. (25)

By construction, we have that
n∑

i=1

m∑
k=1

∆ik =
nγ

a
. (26)

Because
∑n

i=1 Si ≥ b
a
nγ, we also have that

Si∑
i′ Si′

· nγ
a
≤ Si

b
. (27)

Furthermore, for every i, Si ≤ Y µ
i · µi by definition of Si. Because µik ≤ b, this implies that

Si

b
≤
∑m

k=1 Y
µ
ik. With Equation (27), this implies that Si∑

i′ Si′
· nγ

a
≤
∑m

k=1 Y
µ
ik. With Equation

(25), this implies that ∆ik ≤ Y µ
ik. Finally, we note that

∆i · µi =
Y µ
i · µi∑m
k′=1 Y

µ
ik′
· Si∑n

i′=1 Si′
· nγ
a

[Equation (25)]

≤
(∑m

k=1 Y
µ
ikµik

b
∑m

k′=1 Y
µ
ik′

)
Si [Equation (27)]

≤
( ∑m

k=1 Y
µ
ik∑m

k′=1 Y
µ
ik′

)
Si [µik ≤ b]

= Si. (28)

Now we are ready to construct X ′. Let

X ′
ik := Y µ

ik −∆ik +
1

n

n∑
i′=1

∆i′k. (29)

In order for this to be a valid allocation, we need that X ′
ik ≥ 0, which is true because we

showed above that ∆ik ≤ Y µ
ik. We also need that

∑n
i=1X

′
ik = 1, which follows from

n∑
i=1

X ′
ik =

n∑
i=1

(
Y µ
ik −∆ik +

1

n

n∑
i′=1

∆i′k

)
= 1−

n∑
i=1

∆ik +
n∑

i′=1

∆i′k = 1.

Next, we will show that Equation (23) is satisfied for all i for fractional allocation X ′.
Starting with the left hand side of Equation (23), we have

X ′
i · µi −

1

n
∥µi∥1

= Y µ
i · µi −∆i · µi +

m∑
k=1

1

n

n∑
i′=1

∆i′kµik −
1

n
∥µi∥1 [Eq (29)]
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= Si −∆i · µi +
1

n

n∑
i′=1

∆i′ · µi [Eq (24)]

≥ 1

n

n∑
i′=1

∆i′ · µi [Eq (28)]

≥ a

n

n∑
i′=1

m∑
k=1

∆i′k [µik ≥ a]

= γ. [Eq (26)]

Furthermore, we can bound the decrease in social welfare between fractional allocation X ′

and Y µ by

⟨Y µ, µ⟩F − ⟨X ′, µ⟩F = ⟨Y µ −X ′, µ⟩F

≤
n∑

i=1

∆i · µi [Equation (29)]

≤ b
n∑

i=1

m∑
k=1

∆ik [µik ≤ b]

≤ b

a
nγ. [Equation (26)]

Therefore, we have shown that X ′ has the desired properties, and thus the proportionality
constraints satisfy Property 2.

F Proof of Lemma 1

For Section F only, we will assume w.l.o.g. that a = 1 and that b ≥ 1. This is without loss
of generality because envy-freeness in expectation constraints and social welfare are both
scale invariant. Therefore, scaling every player’s values (and mean values) by 1/a will give
an equivalent problem where a = 1.

To prove Lemma 1, will show that we can transform Y µ into a fractional allocation X ′ which
satisfies Property 2 through Algorithm 3. Algorithm 3 iterates over the following types of
‘envy-with-slack’ graphs, which track whether a player prefers their allocation by at least α
over another player’s allocation.

Definition 6. Let create-slack-graph(µ,X, α) be the subroutine which returns the directed
graph with verticesN and edges generated as follows. SupposeG = create-slack-graph(µ,X, α).
Then a directed edge from i to i′ exists in G if and only if

⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ < α.

At a high level, Algorithm 3 constructs ’envy-with-slack’ graphs with progressively smaller
α, with α ≥ γ for all iterations. The algorithm operates on sets of nodes called equivalence
classes, where every pair of nodes in an equivalence class has the same allocation. We
represent the set of equivalence classes in a fractional allocation X as S(X).

30



Definition 7. Let S(X) be the set of equivalence classes of fractional allocation X, where
two nodes i, i′ are part of the same equivalence class S ∈ S(X) if and only if Xi = Xi′ .

Algorithm 3 generally makes progress by either 1) merging two equivalence classes, or 2)
removing an edge from the graph. We formalize this model below.

Each iteration r begins with some allocation Xr and a slack value αr. Algorithm 3 then
generates from these parameters a directed graph Gr = create-slack-graph(µ,Xr, αr), which is
the ’envy-with-slack’ graph for allocation Xr given means µ. As in standard graph notation,
for a graph G we define V (G) as the vertices of G and E(G) as the edges of G. Each edge
e = (i, i′) ∈ E(Gr) has a weight we = ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩. For a set of vertices S, we use
δ+(S) to represent the edges with head in S and tail in N\S, and similarly, we use δ-(S)
to represent the edges with tail in S and head in N\S. For notational convenience, we let
δ-(i) = δ-({i}), and δ+(i) = δ+({i}). Throughout this section, we will use the notation
sw(X,µ) = ⟨X,µ⟩F .

An overview of the algorithm is as follows. In each iteration, Algorithm 3 generally performs
one of three operations and removes an edge by decreasing α. First, if there exists an
equivalence class S with at least one incoming edge but no outgoing edges, then operation
remove-incoming-edge transfers allocation probability from nodes in S to all other nodes. If
such an equivalence class does not exist, then Algorithm 3 finds a specific type of cycle in
the ‘envy-with-slack’ graph. If there exists some node which has an edge to some but not all
of the nodes in the cycle, then operation cycle-shift gives each node in the cycle half of its
current allocation and half of the next node’s allocation. If such a node does not exist and
all edges in the graph have low enough weight, then operation average-clique instead creates
a new equivalence class by merging all equivalence classes that the nodes in the cycle belong
to. Such a merge may lead to envy, which is removed by a call to Algorithm 4. We define
each of the three operations formally below, where each operation returns a new allocation
X ′.

Definition 8. Let S ∈ S(X). Define XSk = Xik for every i ∈ S. Let
remove-incoming-edge(S, α,X) be the subroutine which returns X ′, where

X ′
ik = Xik −

(n− |S|)αXSk

2bn
∑

k′ XSk′
∀ i ∈ S

and

X ′
ik = Xik +

|S|αXSk

2bn
∑

k′ XSk′
∀ i ∈ N\S

Definition 9. Let C be a cycle in a graph G = create-slack-graph(µ,X, α) and next(i) be
the node which i points to in C. Then the subroutine cycle-shift(C,X) returns X ′, where

X ′
ik =

Xik +Xnext(i)k

2
∀ i ∈ V (C)

X ′
ik = Xik ∀ i ∈ N\V (C)
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Definition 10. Let Q be a clique in a graph G = create-slack-graph(µ,X, α). Then the
subroutine average-clique(Q,X) returns X ′, where

X ′
ik =

∑
i′∈Q Xi′k

|Q|
∀ i ∈ Q

X ′
ik = Xik ∀ i ∈ N\Q

We also define two intermediary operations. Note that the argmin function may return the
empty set, a singleton, or a set with multiple elements.

Definition 11. Let G = create-slack-graph(µ,X, α) with edge set E. For each equivalence
class S ∈ S(X), let ES = argmine∈δ+(S) we, where the size of ES may be 0, 1, or > 1. Let
E ′ =

∑
S ES, and let G′ = (N,E ′). Then the subroutine find-special-cycle(G,S(X)) returns

a cycle C of G′ where V (C) contains at most one member of each equivalence class S ∈ S(X)
(and returns ∅ if no such cycle exists).

Definition 12. LetG = create-slack-graph(µ,X, α) and let U ⊂ N . Let distribute-equally(U, β,X)
be the subroutine which returns X ′, where

X ′
ik = (1− |N\U | · β) ·Xik ∀ i ∈ U

X ′
ik = Xik + β ·

∑
i′∈U

Xi′k ∀ i ∈ N\U

We are now ready to present Algorithm 3.

Algorithm 3 calls remove-envy, which is equivalent to calling Algorithm 4. Algorithm 4 will
require the following definition.

Definition 13. Let create-non-negative-envy-graph(µ,X) be the subroutine which returns
the directed graph with vertices N and edges generated as follows. Suppose G =
create-non-negative-envy-graph(µ,X). Then a directed edge from i to i′ exists in G if and
only if

⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ≤ 0.

Note that this definition is exactly the same as that of create-slack-graph(µ,X, 0), except
with a weak instead of a strict inequality. We now present Algorithm 4.

We begin by proving some helpful lemmas. It will be convenient to define the following term.

Definition 14. Let X be an envy-free fractional allocation for µ if for all i, i′ ∈ N ,

⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ≥ 0.

Lemma 4. Let X be an envy-free fractional allocation for µ, and let G = create-slack-graph(µ,X, α)
with edge set E. Suppose that there exists some equivalence class S ∈ S(X) such that
δ-(S) ̸= ∅ and δ+(S) = ∅ in G, and let X ′ = remove-incoming-edge(S, α,X). Let G′ =
create-slack-graph(µ,X ′, α/2b) with edge set E ′. Then |E ′| < |E|.
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Algorithm 3 Achieving Envy with Slack
Require Y µ, µ
Let α0 ← γ · (en2 log(4bn4)+n3 log(2n), X0 ← Y µ, G0 ← create-slack-graph(µ,X0, α0), r ← 0.
while ∃(u, v) ∈ E(Gr) s.t. u, v are in different equivalence classes do

if ∃ S ∈ S(Xr) s.t. δ-(S) ̸= ∅ and δ+(S) = ∅ then
▷ Xr+1 = remove-incoming-edge(S, αr, Xr)
▷ αr+1 = αr

2b

else
▷ C = find-special-cycle(Gr,S(Xr))
if ∃ u ∈ N and ∃i, i′ ∈ V (C) such that (u, i) ∈ E and (u, i′) /∈ E then

▷ Xr+1 = cycle-shift(C,Xr)
▷ αr+1 = αr

2

else if ∃ e ∈ E(Gr) s.t. we ≥ αr

4bn4 then
▷ Xr+1 = Xr

▷ αr+1 = αr

4bn4

else
▷ S ′ = {S ∈ S(Xr) : S ∩ V (C) ̸= ∅}
▷ Q =

⋃
S∈S′ S

▷ Xavg = average-clique(Q,Xr)
▷ αavg = αr

n

▷ Gavg = create-slack-graph(µ,Xavg, αavg) // Gavg defined for analysis only.
▷ X ′ = Xavg

▷ G′ = create-slack-graph(µ,X ′, 0)
while ∃e ∈ E(G′) do

▷ X ′ = remove-envy(µ,X ′)
▷ G′ = create-slack-graph(µ,X ′, 0)

end while
▷ Xr+1 = X ′

▷ αr+1 = αavg

2

end if
end if
▷ Gr+1 ← create-slack-graph(µ,Xr+1, αr+1)
▷ r = r + 1

end while
return Xr

Proof. We first show that if an edge e /∈ E, then e /∈ E ′. Note that for any i, i′ such that
(i, i′) /∈ E,

⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ≥ α >
α

2b
.

Therefore, to show that an edge (i, i′) not in E is also not in E ′, it suffices to show that
⟨X ′

i, µi⟩ − ⟨X ′
i′ , µi⟩ ≥ ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩.

The subroutine remove-incoming-edge(S, α,X) only transfers weight from S to N\S, which
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Algorithm 4 Remove Envy (also referred to as subroutine remove-envy(µ,X0))

Require µ,X0

Let G0 ← create-non-negative-envy-graph(µ,X0), r ← 0.
if |{e ∈ E(G0) : we < 0}| = 0 then

return X0

end if
▷ Choose (u, v) ∈ {e ∈ E(G0) : we < 0}
▷ U ← {v′ ∈ E(G0) : w(u,v′) < 0}
while w(u,v) < 0 and there does not exist a cycle in Gr containing (u, v) do

▷ ∀ i ∈ U , βi = min
i′∈N\U,β≥0

(
β s.t. distribute-equally(U, β,Xr) returns X ′ where ⟨X ′

i, µi⟩ = ⟨X ′
i′ , µi⟩

)
▷ βu = β s.t. distribute-equally(U, β,Xr) returns X ′ where ⟨X ′

u, µu⟩ = ⟨X ′
v, µu⟩

▷ i∗ = argmini∈({u}∪U) βi

▷ Xr+1 = distribute-equally(U, βi∗ , X
r)

▷ U = U ∪ {i∗}
▷ Gr+1 ← create-non-negative-envy-graph(µ,Xr+1)
▷ r = r + 1

end while
if w(u,v) < 0 then

▷ C ← cycle in Gr containing (u, v)
// Let prev(i) and next(i) be the nodes before and after i in C, respectively.
▷ ∀ i ∈ V (C), X ′

i = Xr
next(i)

else
▷ X ′ = Xr

end if
return X ′

implies that no node in N\S will gain an edge to a node in S. Formally,

⟨X ′
i′ , µi′⟩ − ⟨X ′

i, µi′⟩ > ⟨Xi′ , µi′⟩ − ⟨Xi, µi′⟩ ∀ i ∈ S, i′ ∈ N\S. (30)

Every pair of nodes i, i′ ∈ S has their fractional allocation reduced by the same amount, so

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ = ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ∀ i, i′ ∈ S. (31)

Similarly, every pair of nodes i, i′ ∈ N\S has their fractional allocation increased by the
same amount, so

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ = ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ∀ i, i′ ∈ N\S. (32)

Finally, we observe that for any i ∈ S and i′ ∈ N\S,

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ =

⟨Xi, µi⟩ −
∑
k∈[m]

(n− |S|)αXSkµik

2bn
∑

k′ XSk′

−
⟨Xi′ , µi⟩+

∑
k∈[m]

|S|αXSkµik

2bn
∑

k′ XSk′


34



= ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ −
∑
k∈[m]

nαXSkµik

2bn
∑

k′ XSk′

≥ ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ −
∑
k∈[m]

nαXSk

2n
∑

k′ XSk′

= ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ −
α

2

≥ α− α

2

≥ α

2b
.

where the second inequality is because (i, i′) ̸∈ E. Therefore, by definition of G′, (i, i′) /∈ E ′.

Recall that δ-(S) ̸= ∅ in G. We will now show that δ-(S) = ∅ in G′. Observe that for i ∈ S
and i′ ∈ N\S,

⟨X ′
i′ , µi′⟩ − ⟨X ′

i, µi′⟩ =

⟨Xi′ , µi′⟩+
∑
k∈[m]

|S|αXSkµi′k

2bn
∑

k′ XSk′

−
⟨Xi, µi′⟩ −

∑
k∈[m]

(n− |S|)αXSkµi′k

2bn
∑

k′ XSk′


= ⟨Xi′ , µi′⟩ − ⟨Xi, µi′⟩+

∑
k∈[m]

nαXSkµi′k

2bn
∑

k′ XSk′

≥ ⟨Xi′ , µi′⟩ − ⟨Xi, µi′⟩+
α

2b

≥ α

2b
.

Therefore, (i′, i) /∈ E, which implies δ-(S) = ∅ in G′. We conclude that all edges in E ′ exist
in E, and at least one edge in E does not exist in E ′, which implies that |E ′| < |E|.

Lemma 5. Let X be an envy-free fractional allocation for µ, and let G = create-slack-graph(µ,X, α)
with edge set E. Suppose that there exists some equivalence class S ∈ S(X) such that
δ-(S) ̸= ∅ and δ+(S) = ∅ in G, and let X ′ = remove-incoming-edge(S, α,X). Then X ′ is an
envy-free allocation for µ.

Proof. Let G′ = create-slack-graph(µ,X ′, α/2b) with edge set E ′. It suffices to show that
we ≥ 0 ∀e ∈ E ′. By Lemma 4, if an edge (i, i′) /∈ E, then

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ ≥ α
2b
≥ 0.

Consider any i ∈ S and i′ ∈ N\S. Then there must not exist an edge (i, i′) ∈ E by
assumption. Also by assumption, for any i, i′ such that (i, i′) ∈ E, we have that ⟨Xi, µi⟩ −
⟨Xi′ , µi⟩ ≥ 0. By a direct application of Equations (30), (31), and (32), we can conclude
that ⟨X ′

i, µi⟩ − ⟨X ′
i′ , µi⟩ ≥ 0 as well.

Lemma 6. Let G = create-slack-graph(µ,X, α) with edge set E. Suppose that there exists
some equivalence class S ∈ S(X) such that δ-(S) ̸= ∅ and δ+(S) = ∅ in G, and let X ′ =
remove-incoming-edge(S, α,X). Then

sw(X,µ)− sw(X ′, µ) ≤ αn

2
.
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Proof. Observe that

sw(X ′, µ) =
∑
i∈S

⟨X ′
i, µi⟩+

∑
i∈N\S

⟨X ′
i, µi⟩

≥
∑
i∈S

(
1− (n− |S|)α

2bn
∑

k′ XSk′

)
· ⟨Xi, µi⟩+

∑
i∈N\S

⟨Xi, µi⟩

≥
∑
i∈S

(
1− α

2b
∑

k′ XSk′

)
· ⟨Xi, µi⟩+

∑
i∈N\S

⟨Xi, µi⟩

=
∑
i∈[N ]

⟨Xi, µi⟩ −
α

2b
∑

k′ XSk′

∑
i∈S

⟨Xi, µi⟩

=
∑
i∈[N ]

⟨Xi, µi⟩ −
α

2b
∑

k′ XSk′

∑
i∈S

∑
k

XSkµik

≥
∑
i∈[N ]

⟨Xi, µi⟩ −
α

2
∑

k′ XSk′

∑
i∈S

∑
k

XSk

= sw(X,µ)− α|S|
2

≥ sw(X,µ)− αn

2
.

This implies that

sw(X,µ)− sw(X ′, µ) ≤ αn

2
.

Lemma 7. Let X be an envy-free fractional allocation for µ and let G = create-slack-graph(µ,X, α)
with edge set E. Let C = find-special-cycle(G,S(X)) and suppose there exists a node u
such that for i, i′ ∈ V (C), (u, i) ∈ E and (u, i′) /∈ E. Let X ′ = cycle-shift(C,X) and let
G′ = create-slack-graph(µ,X ′, α/2) with edge set E ′. Then |E ′| < |E|.

Proof. We first show that if an edge e /∈ E, then e /∈ |E ′|. Suppose that i ∈ V (C), i′ ∈ N ,
and edge (i, i′) /∈ E. Then

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ =
1

2
⟨Xi, µi⟩+

1

2
⟨Xnext(i), µi⟩ − ⟨Xi′ , µi⟩

≥ 1

2
⟨Xi, µi⟩+

1

2
⟨Xi′ , µi⟩ − ⟨Xi′ , µi⟩

=
1

2
(⟨Xi, µi⟩ − ⟨Xi′ , µi⟩) (33)

≥ α

2
.

Now, suppose that i, i′ /∈ V (C) and edge (i, i′) /∈ E. Then

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ = ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ≥ α. (34)
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Finally, suppose that i ∈ V (C), i′ ∈ N\V (C), and edge (i′, i) /∈ E. Then

⟨X ′
i′ , µi′⟩ − ⟨X ′

i, µi′⟩ = ⟨Xi′ , µi′⟩ −
1

2
⟨Xi, µi′⟩ −

1

2
⟨Xnext(i), µi′⟩

=
1

2
(⟨Xi′ , µi′⟩ − ⟨Xi, µi′⟩) +

1

2
(⟨Xi′ , µi′⟩ − ⟨Xnext(i), µi′⟩) (35)

≥ 1

2
(α) +

1

2
(0)

=
α

2
.

We have shown that if e ∈ E ′, then e ∈ E. Now we will show that there exists at least one
edge e such that e ∈ E, but e /∈ E ′. Consider the node u described in the lemma statement,
and let i ∈ V (C) be some node such that (u, i) ∈ E but (u, next(i)) /∈ E. Suppose that
u /∈ V (C). Then

⟨X ′
u, µu⟩ − ⟨X ′

i, µu⟩ = ⟨Xu, µu⟩ −
1

2
⟨Xi, µu⟩ −

1

2
⟨Xnext(i), µu⟩

=
1

2
(⟨Xu, µu⟩ − ⟨Xi, µu⟩) +

1

2
(⟨Xu, µu⟩ − ⟨Xnext(i), µu⟩)

≥ 1

2
(α) +

1

2
(0)

=
α

2
.

Suppose that u ∈ V (C). Then

⟨X ′
u, µu⟩ − ⟨X ′

i, µu⟩ =
1

2
⟨Xu, µu⟩+

1

2
⟨Xnext(u), µu⟩ −

1

2
⟨Xi, µu⟩ −

1

2
⟨Xnext(i), µu⟩

=
1

2
(⟨Xu, µu⟩ − ⟨Xi, µu⟩) +

1

2
(⟨Xnext(u), µu⟩ − ⟨Xnext(i), µu⟩)

≥ 1

2
(α) +

1

2
(0)

=
α

2
.

This implies that (u, i) /∈ E ′, as desired.

Lemma 8. Let X be an envy-free fractional allocation for µ and let G = create-slack-graph(µ,X, α)
with edge set E. Let C = find-special-cycle(G,S(X)) and let X ′ = cycle-shift(C,X). Then
X ′ is an envy-free allocation for µ.

Proof. Let G′ = create-slack-graph(µ,X ′, α/2) with edge set E ′. It suffices to show that
we ≥ 0 for all e ∈ E ′. By Lemma 7, if an edge (i, i′) /∈ E, then

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ ≥ α
2
≥ 0.

Recall that by assumption, for any i, i′ such that (i, i′) ∈ E, ⟨Xi, µi⟩−⟨Xi′ , µi⟩ ≥ 0. Suppose
that i ∈ V (C), i′ ∈ N , and (i, i′) ∈ E. Then by Equation (33),

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ ≥
1

2
(⟨Xi, µi⟩ − ⟨Xi′ , µi⟩) ≥ 0.
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Suppose instead that i, i′ /∈ V (C) and edge (i, i′) ∈ E. Then by Equation (34),

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ = ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ≥ 0.

Finally, suppose that i ∈ V (C), i′ ∈ N\V (C), and edge (i′, i) ∈ E. Then by Equation (35),

⟨X ′
i′ , µi′⟩ − ⟨X ′

i, µi′⟩ =
1

2
(⟨Xi′ , µi′⟩ − ⟨Xi, µi′⟩) +

1

2
(⟨Xi′ , µi′⟩ − ⟨Xnext(i), µi′⟩)

≥ 1

2
(0) +

1

2
(0)

= 0.

Lemma 9. Let X be an envy-free fractional allocation for µ and let G = create-slack-graph(µ,X, α)
with edge set E. Let C = find-special-cycle(G,S(X)) and let X ′ = cycle-shift(C,X). Then

sw(X,µ)− sw(X ′, µ) ≤ nα

2
.

Proof. Observe that

sw(X ′, µ) =
∑

i∈V (C)

⟨X ′
i, µi⟩+

∑
i∈N\V (C)

⟨X ′
i, µi⟩

=
1

2
·
∑

i∈V (C)

(⟨Xi, µi⟩+ ⟨Xnext(i), µi⟩) +
∑

i∈N\V (C)

⟨Xi, µi⟩

≥ 1

2
·
∑

i∈V (C)

(⟨Xi, µi⟩+ ⟨Xi, µi⟩ − α) +
∑

i∈N\V (C)

⟨Xi, µi⟩

=
∑

i∈V (C)

(
⟨Xi, µi⟩ −

α

2

)
+

∑
i∈N\V (C)

⟨Xi, µi⟩

≥
∑

i∈V (C)

(
⟨Xi, µi⟩ −

α

2

)
+

∑
i∈N\V (C)

(
⟨Xi, µi⟩ −

α

2

)
=
∑
i∈N

⟨Xi, µi⟩ −
nα

2

This implies that

sw(X,µ)− sw(X ′, µ) ≤ nα

2
.

Lemma 10. Let X be an envy-free fractional allocation for µ. Let G =
create-slack-graph(µ,X, α) with edge set E, and let Q be a clique in G. Let X ′ =
average-clique(Q,X) and G′ = create-slack-graph(µ,X ′, α/n), with E ′ the edge set of G′.
Then |E ′| ≤ |E|.
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Proof. It suffices to show that if an edge e /∈ E, then e /∈ |E ′|. If i, i′ ∈ Q, then edge (i, i′)
must be in E, as Q is a clique. Suppose that i, i′ ∈ N\Q and (i, i′) ̸∈ E. Then

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ = ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ≥ α.

Now, suppose that i ∈ Q, i′ ∈ N\Q, and (i, i′) /∈ E. Then

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ =
1

|Q|

(∑
i′′∈Q

⟨Xi′′ , µi⟩

)
− ⟨Xi′ , µi⟩

≥ ⟨Xi, µi⟩ − α

(
|Q| − 1

|Q|

)
− ⟨Xi′ , µi⟩

≥ α− α

(
|Q| − 1

|Q|

)
≥ α

n
.

Finally, suppose that i ∈ Q, i′ ∈ N\Q, and (i′, i) /∈ E. Then

⟨X ′
i′ , µi′⟩ − ⟨X ′

i, µi′⟩ = ⟨Xi′ , µi′⟩ −
1

|Q|

(∑
i′′∈Q

⟨Xi′′ , µi′⟩

)

=
1

|Q|

(∑
i′′∈Q

⟨Xi′ , µi′⟩ − ⟨Xi′′ , µi′⟩

)

=
1

|Q|

⟨Xi′ , µi′⟩ − ⟨Xi, µi′⟩+
∑

{i′′∈Q:i′′ ̸=i}

⟨Xi′ , µi′⟩ − ⟨Xi′′ , µi′⟩


≥ 1

n
(α + 0)

≥ α

n
.

Lemma 11. Let X be an envy-free fractional allocation for µ. Let G = create-slack-graph(µ,X, α)
with edge set E, and let Q be a clique in G. Let X ′ = average-clique(Q,X). Then

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ ≥ −α ∀i, i′ ∈ N.

Proof. First, suppose i′ ∈ N\Q and i ∈ N . Then

⟨X ′
i′ , µi′⟩ − ⟨X ′

i, µi′⟩ ≥ min
i′′∈N
⟨Xi′ , µi′⟩ − ⟨Xi′′ , µi′⟩ ≥ 0.

Suppose instead that i, i′ ∈ Q. Then

⟨X ′
i′ , µi′⟩ − ⟨X ′

i, µi′⟩ = 0.
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Finally, suppose that i ∈ Q, i′ ∈ N\Q. Then

⟨X ′
i, µi⟩ − ⟨X ′

i′ , µi⟩ =
1

|Q|

(∑
i′′∈Q

⟨Xi′′ , µi⟩

)
− ⟨Xi′ , µi⟩

≥ ⟨Xi, µi⟩ − α

(
|Q| − 1

|Q|

)
− ⟨Xi′ , µi⟩

≥ 0− α

(
|Q| − 1

|Q|

)
≥ −α.

Lemma 12. Let G = create-slack-graph(µ,X, α) with edge set E, and let Q be a clique in
G. Let X ′ = average-clique(Q,X). Then

sw(X,µ)− sw(X ′, µ) ≤ n · α.

Proof. Observe that

sw(X ′, µ) =
∑
i∈Q

⟨X ′
i, µi⟩+

∑
i∈N\Q

⟨X ′
i, µi⟩

≥
∑
i∈Q

(⟨Xi, µi⟩ − α) +
∑

i∈N\Q

⟨Xi, µi⟩

≥
∑
i∈N

(⟨Xi, µi⟩ − α)

≥ sw(X,µ)− n · α.

Rearranging, this implies that

sw(X,µ)− sw(X ′, µ) ≤ n · α.

Lemma 13. Let G = create-slack-graph(µ,X, 0) with edge set E, and let X ′ = remove-envy(µ,X).
Further let G′ = create-slack-graph(µ,X ′, 0) with edge set E ′. Then |E ′| < |E|.

Proof. First, we show that if an edge e /∈ E, then e /∈ E ′. In other words, we will show
that no new edges with positive envy (negative weight) are added. Observe that within the
while loop, remove-envy distributes βi∗ from a set U to N\U . If at the beginning of the
while loop ∃i ∈ U such that wi,i′ < 0 for some i′ ∈ N\U , then βi∗ = 0 and i′ is added to U .
Otherwise, by definition βi∗ is at most the minimum fraction that the set U needs to give
away in order to create a new 0 envy edge between any node in U and a node i′ ∈ N\U .
Therefore, distribute-equally cannot create a new edge with positive envy by our choice of
βi∗ , which implies that no new edge with positive envy could have been created by the end
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of the while loop. Now, suppose that w(u,v) < 0 at the end of the while loop. Then there
is a cycle C in Gr containing (u, v). Then for every i, ⟨X ′

i, µi⟩ ≥ ⟨Xr
i , µi⟩. The total set of

allocations has not changed, so no positive envy is introduced.

Now, we show that there exists an edge e ∈ E such that e /∈ E ′. That is, we show that we
have removed some edge with positive envy. If w(u,v) = 0 at the end of the while loop, then
(u, v) ∈ E and (u, v) ̸∈ E ′ so we are done. Otherwise, there is a cycle in Gr containing (u, v).
As the overall set of allocations has not changed and ⟨Xv, µu⟩ − ⟨Xu, µu⟩ > 0, we must have∣∣i ∈ V (C) s.t. ⟨X ′

i, µu⟩ − ⟨X ′
u, µu⟩ < 0

∣∣ < ∣∣i ∈ V (C) s.t. ⟨Xi, µu⟩ − ⟨Xu, µu⟩ < 0
∣∣.

Therefore, there exists some edge e = (u, i) for i ∈ V (C) such that e ∈ E but e /∈ E ′.

Lemma 14. Let G = create-slack-graph(µ,X, 0) with edge set E. Suppose that

− α
4bn3 ≤ ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ∀i, i′ ∈ N.

Let X0 = X and define Xℓ = remove-envy(µ,Xℓ−1). Then for all i, i′, ℓ,

− α
4n2 ≤ ⟨Xℓ

i , µi′⟩ − ⟨Xℓ−1
i , µi′⟩ ≤ α

4n3 .

Proof. We first prove by induction on ℓ that for all ℓ,

− α
4bn3 ≤ ⟨Xℓ

i , µi⟩ − ⟨Xℓ
i′ , µi⟩ ∀i, i′ ∈ N.

The base case is true by assumption. Now consider any ℓ. By the inductive hypothesis, we
have that for all i, i′ ∈ N , − α

4bn3 ≤ ⟨Xℓ−1
i , µi⟩ − ⟨Xℓ−1

i′ , µi⟩. Suppose for contradiction that
there exists some i, i′ ∈ N such that − α

4bn3 > ⟨Xℓ
i , µi⟩−⟨Xℓ

i′ , µi⟩. This means that the envy of
i for i′ must have increased to more than during α

4bn3 in the ℓth call to remove-envy. The only
way for the envy of i for i′ to increase in remove-envy is if i ∈ U , i′ ∈ N\U , and βi∗ > 0. If
⟨Xℓ−1

i , µi⟩−⟨Xℓ−1
i′ , µi⟩ ≤ 0, then βi∗ = 0. Therefore, we must have ⟨Xℓ−1

i , µi⟩−⟨Xℓ−1
i′ , µi⟩ > 0.

However, by our choice of βi∗ , i
′ must then be added to U before i becomes envious of i′.

Therefore, it is not possible for the envy of i for i′ to have increased to more than α
4bn3 in the

ℓth call to remove-envy.

We now prove the main lemma. Consider any ℓ. One stopping condition of the while loop in
remove-envy is when w(u,v) = ⟨Xr

u, µu⟩ − ⟨Xr
v , µu⟩ = 0. Observe that v ∈ U and u ∈ N\U for

all iterations r in the while loop. This implies that u’s allocation is always increasing, while
v’s allocation is always decreasing. The increase in u’s utility is therefore at most u’s current
envy towards v’s allocation in Xℓ−1

i , which is upper bounded by α
4bn3 by the induction proof

above. Formally,

⟨Xℓ
u, µu⟩ − ⟨Xℓ−1

u , µu⟩ ≤ ⟨Xℓ−1
v , µu⟩ − ⟨Xℓ−1

u , µu⟩ ≤
α

4bn3
. (36)

Furthermore, over the course of remove-envy, the allocation of node u is increased at least
as much as that of any other node i, i.e.

(Xℓ
uk −Xℓ−1

uk ) ≥ (Xℓ
ik −Xℓ−1

ik ) ∀i ∈ N, k ∈ [m].
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This is because u is always a member of N\U . Therefore, for any i, i′ ∈ N ,

⟨Xℓ
i , µi′⟩ − ⟨Xℓ−1

i , µi′⟩ ≤ b · α

4bn3
=

α

4n3
,

as b is the largest possible utility ratio between two nodes.

Again by applying Equation (36) and because b is the largest possible utility ratio between
two nodes, for any i, i′ ∈ [N ], the utility of i′ for the allocation transferred from i to u is at
most b · α

4bn3 = α
4n3 . Node i could have transferred to at most n nodes during remove-envy,

which implies that node i′ has utility of at most n · α
4n3 = α

4n2 for all of the allocation
transferred away from node i during remove-envy. Therefore,

⟨Xℓ
i , µi′⟩ − ⟨Xℓ−1

i , µi′⟩ ≥ −
α

4n2
∀ i ∈ N.

Lemma 15. Let G = create-slack-graph(µ,X, 0) with edge set E. Suppose that

− α
4bn3 ≤ ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ∀i, i′ ∈ N.

Let X0 = X and define Xℓ = remove-envy(µ,Xℓ−1). Then for all i, i′ and for all ℓ ≤ n2,

sw(X0, µ)− sw(Xℓ, µ) ≤ nα
4
.

Proof. Consider some ℓ. By Lemma 14 we know that

⟨Xℓ
i , µi⟩ − ⟨Xℓ−1

i , µi⟩ ≥ −
α

4n2
∀ i ∈ N.

Applying the above once for each node, we obtain

sw(Xℓ, µ) =
∑
i∈N

⟨Xℓ
i , µi⟩

≥
∑
i∈N

(
⟨Xℓ

i , µi⟩ −
α

4n2

)
≥ sw(Xℓ−1, µ)− n · α

4n2
.

Rearranging, this implies that

sw(Xℓ−1, µ)− sw(Xℓ, µ) ≤ α

4n
.

Because ℓ ≤ n2, we therefore must have

sw(X0, µ)− sw(Xℓ, µ) ≤ nα

4
.
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Lemma 16. Let G = create-slack-graph(µ,X, α) with edge set E. Suppose that for S ∈
S(X), if δ-(S) /∈ ∅, then δ+(S) /∈ ∅. Further suppose that

− α
4bn3 ≤ ⟨Xi, µi⟩ − ⟨Xi′ , µi⟩ ∀i, i′ ∈ N

Let X0 = X and define Xℓ = remove-envy(µ,Xℓ−1). Finally, for ℓ ≤ n2 let G′ = create-slack-graph(µ,Xℓ, α
2
)

with edge set E ′. Then |E ′| ≤ |E|.

Proof. It suffices to show that if an edge (i, i′) /∈ E, then (i, i′) /∈ E ′. By Lemma 14, in each
call to remove-envy, the utility of i for the allocation of i decreases by at most α

4n2 . Therefore,

⟨Xℓ
i , µi⟩ − ⟨X0

i , µi⟩ ≥ ℓ · − α

4n2
≥ −α

4
.

Again by Lemma 14, in each call to remove-envy, the utility of i for the allocation of i′

increases by at most α
4n3 . Therefore,

⟨Xℓ
i′ , µi⟩ − ⟨X0

i′ , µi⟩ ≤ ℓ · α

4n3
≤ α

4n
.

Putting both equations together, we have

⟨Xℓ
i , µi⟩ − ⟨Xℓ

i′ , µi⟩ ≥ ⟨X0
i , µi⟩ −

α

4
−
(
⟨X0

i′ , µi⟩+
α

4n

)
= ⟨X0

i , µi⟩ − ⟨X0
i′ , µi⟩ −

α

4
− α

4n

≥ α− α

2

=
α

2

as desired.

Lemma 17. Let X ′ = remove-envy(µ,X). Then |S(X ′)| ≤ |S(X)|.

Proof. It suffices to show that no equivalence class S ∈ S(X) becomes smaller (i.e. strictly
loses members) during remove-envy. First, suppose for contradiction that S first becomes
smaller during the while loop during iteration r. Then in iteration r, it must be the case
that S ∩ U ̸= ∅ and S ∩ (N\U) ̸= ∅, otherwise the allocation of each member of S would
have changed by the same amount. Furthermore, it must be the case that in iteration r,
βi∗ > 0, otherwise no allocation would have been transferred. In iteration r, consider some
i ∈ (S ∩ U) and i′ ∈ (S ∩ (N\U)). Then βi = 0, as i begins iteration r with zero envy
towards i′. Because βi∗ ≤ mini βi, this means βi∗ ≤ 0, which is a contradiction . Therefore,
no equivalence class S becomes smaller during the while loop. To conclude the proof, we
observe that in the cycle elimination step after the while loop, the total set of allocations
remains the same, which implies that the set of equivalence classes remains the same as
well.

We are finally ready to prove Lemma 1.
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Proof of Lemma 1. We first prove by induction that every iteration r starts with an envy-free
allocation Xr. The base case is satisfied because X0 = Y µ, and Y µ is envy-free by definition.
Now, suppose that the inductive hypothesis holds for all iterations up to and including
r. We will show that iteration r + 1 starts with an envy-free allocation. If Xr+1 = Xr,
then we can directly invoke the inductive hypothesis for iteration r. Otherwise, suppose
that remove-incoming-edge was called in iteration r of Algorithm 3. Then by Lemma 5,
iteration r + 1 starts with an envy-free allocation. Suppose instead that cycle-shift was
called in iteration r. Then by Lemma 8, iteration r + 1 starts with an envy-free allocation.
Finally, suppose that average-clique was called in iteration r. Then the remove-envy is called
repeatedly as long as there exists an edge with negative weight in E(G′). By Lemma 13,
each call to remove-envy removes an edge with negative weight from E(G′), and adds no
new edges with negative weight. There are a finite number of edges in E(G′), so this loop
terminates. Therefore, iteration r + 1 starts with an envy-free allocation.

Next, we prove that in every iteration, either an edge is removed from the envy-with-slack
graph, or the number of equivalence classes decreases. Formally, for two iterations r and
r + 1, we prove that either

1. |E(Gr)| > |E(Gr+1)| or

2. |E(Gr)| ≥ |E(Gr+1)| and |S(Xr)| > |S(Xr+1)|.

If remove-incoming-edge is called in iteration r of Algorithm 3, then by Lemma 4 we have
|E(Gr)| > |E(Gr+1)|. If cycle-shift is called in iteration r, then by Lemma 7 we have
|E(Gr)| > |E(Gr+1)|. If ∃ e ∈ E(Gr) s.t. we ≥ α

4bn4 , then e ∈ E(Gr) but e /∈ E(Gr+1).
Furthermore, if e′ /∈ E(Gr), then e′ /∈ E(Gr+1) as Xr = Xr+1. Therefore, we have
|E(Gr)| > |E(Gr+1)|.

Finally, suppose average-clique is called in iteration r on clique Q. Recall that Gavg =
create-slack-graph(µ, average-clique(Q,Xr), αavg). By Lemma 10, we know that |E(Gr)| ≥
|E(Gavg)|. The number of edges in E(Gavg) is at most n2, so remove-envy will be called at
most n2 times by Lemma 13. Because average-clique was called, we know that we <

αr

4bn4 ∀e ∈
E(Gr). By Lemma 11 with α = αr

4bn4 ,

⟨Xavg
i , µi⟩ − ⟨Xavg

i′ , µi⟩ ≥ − αr

4bn4 = − αavg

4bn3 ∀i, i′ ∈ N.

Therefore, we can apply Lemma 16 with α = αavg to conclude that |E(Gr+1)| ≤ |E(Gavg)| ≤
|E(Gr)|. Finally, observe that because C included members of at least two equivalence
classes, the operation average-clique strictly decreased the number of equivalence classes.
By Lemma 17, operation remove-envy does not increase the number of equivalence classes.
Therefore, |S(Xr)| > |S(Xr+1)|.

We now prove that the algorithm terminates with an Xr which satisfies Proposition 2. Each
iteration either removes an edge or merges two equivalence classes. Because the maximum
number of edges is n2 and the number of equivalence classes is n, Algorithm 3 terminates
in at most n3 iterations. We need to show that Algorithm 3 terminates with αr ≥ γ. If an
iteration r does not call remove-envy, then an edge is removed and αr+1 ≥ αr

4bn4 . There can
be at most n2 such iterations. If an iteration r does call remove-envy, then αr+1 = αr

2n
. There
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can be at most n such iterations which call remove-envy between every iteration which does
not call remove-envy, for a total of at most n3 iterations. Therefore,

αr ≥ α0

(4bn4)n2 · (2n)n3 =
α0

en2 log(4bn4)+n3 log(2n)
.

Choosing α0 = γ · (en2 log(4bn4)+n3 log(2n)) thus implies that αr ≥ γ for every iteration r if
γ · (en2 log(4bn4)+n3 log(2n)) ≤ 1. Therefore, we set γ0 = e−n2 log(4bn4)−n3 log(2n).

Finally, we need to show that Algorithm 3 does not significantly decrease the so-
cial welfare. By Lemmas 6, 9 and 12, we know that each of the operations
remove-incoming-edge, cycle-shift, and average-clique change the social welfare by at most
O(γ). Each of these operations is called at most n3 times. Each of remove-incoming-edge and
cycle-shift are called at most once for each edge, or at most n2 times. Operation average-clique
is called at most n times for each edge, or at most n3 times. Finally, Lemma 15 bounds the
total social welfare loss from all calls to remove-envy between any two calls to average-clique
by O(γ). Therefore, sw(Y µ, µ)− sw(Xr, µ) = O(γ), as desired.
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G Proof of Theorem 2

Proof. Let a = 1, b = 3, n = 2, and m = 2, and assume that the distributions of values are
all normal distributions with variance 1. For n = 2, envy-freeness and proportionality are
equivalent, and therefore we will focus on the former. Define ϵ = T−1/3. We will prove the
desired result by contradiction. Assume there exists an algorithm ALG such that for any
µ∗ ∈ [a, b]2×2, the probability that the algorithm satisfies the envy-freeness constraints and

has regret of less than T 2/3

log(T )
is at least 1− 1/T .

Consider the following two matrices.

µ1 =

[
2 3
1 1

]
µ2 =

[
2 3
1 1 + ϵ

]
Define P1 as the distribution of the full history HT when using algorithm ALG when µ∗ = µ1.
Define P2 as the equivalent distribution when µ∗ = µ2.

We will proceed according to the following proof sketch. First, we will show that if µ∗ = µ1,
then ALG with constant probability allocates Õ(T 2/3) items of type 2 to player 2 (Lemma
18). We next upper bound the total variation distance between P1 and P2. When two
distributions are sufficiently close in total variation distance, then an event that has constant
probability under one distribution also has constant probability under the other distribution.
Therefore, Lemma 18 and the closeness in TV distance of P1 and P2 together imply that if
µ∗ = µ2, then ALG with constant probability allocates Õ(T 2/3) items of type 2 to player
2. When ALG allocates Õ(T 2/3) items of type 2 to player 2, then ALG cannot satisfy the
envy-freeness constraints for µ2. Therefore, the previous two sentences together imply that
with constant probability, ALG will not satisfy the envy-freeness constraints for all t when
µ∗ = µ2, which is a contradiction.

Lemma 18. Using the notation defined above,

EP1 [N
T
22] ≤ T 2/3

and

Pr
P1

(
T−1∑
t=0

X t
22 >

T 2/3

log(T )

)
< 1/8. (37)

Intuitively, both equations in Lemma 18 bound how many times an item of type 2 is allocated
to player 2. The first equation bounds in expectation while the second equation bounds
elements of the fractional allocations X t. The proof of Lemma 18 is given in Appendix G.1.

Lemma 19. Using the notation from above,

KL(P1, P2) = EP1 [N
T
22] ·KL

(
N (1, 1),N (1 + ϵ, 1)

)
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Proof. Define f 1
ik as the probability density function (pdf) of N ((µ1)ik, 1) and f 2

ik as the pdf
of N ((µ2)ik, 1). We let fN (µ,σ2) be the pdf of a normal distribution with mean µ and variance
σ2.

For any history HT = {(kt, it, vt)}T−1
t=0 , recall that X t is the fractional allocation chosen by

ALG at time t given history Ht. Then we have that for any HT

P1(HT ) =
T−1∏
t=0

(
1

m
X t

itktf
1
itkt(vt)

)
,

The 1/m term comes from item t having a 1/m probability of being of type kt. The X t
itkt

is the probability that ALG allocates the item of type kt to player it at time t, and finally
f 1
itkt

(vt) is the probability of seeing value vt given that the item of type kt was allocated to
player it. Similarly, we have that

P2(HT ) =
T−1∏
t=0

(
1

m
X t

itktf
2
itkt(vt)

)
.

Therefore, we have that

KL(P1, P2) = EHT∼P1

[
log

(
P1(HT )

P2(HT )

)]
= EHT∼P1

[
log

(∏T−1
t=0

(
1
m
X t

itkt
f 1
itkt

(vt)
)∏T−1

t=0

(
1
m
X t

itkt
f 2
itkt

(vt)
))]

= EHT∼P1

[
log

(∏T−1
t=0

(
f 1
itkt

(vt)
)∏T−1

t=0

(
f 2
itkt

(vt)
))]

= EHT∼P1

[
log

(
T−1∏
t=0

f 1
itkt

(vt)

f 2
itkt

(vt)

)]

= EHT∼P1

log
 ∏

t:(it,kt)=(2,2)

fN (1,1)(vt)

fN (1+ϵ,1)(vt)


= EHT∼P1

 ∑
t:(it,kt)=(2,2)

log

(
fN (1,1)(vt)

fN (1+ϵ,1)(vt)

)
=

T−1∑
t=0

EHT∼P1

[
1(it,kt)=(2,2) log

(
fN (1,1)(vt)

fN (1+ϵ,1)(vt)

)]

=
T−1∑
t=0

EHT∼P1

[
1(it,kt)=(2,2) E

[
log

(
fN (1,1)(vt)

fN (1+ϵ,1)(vt)

)∣∣∣∣1(it,kt)=(2,2)

]]

=
T−1∑
t=0

EHT∼P1

[
1(it,kt)=(2,2) Ev∼N (1,1)

[
log

(
fN (1,1)(v)

fN (1+ϵ,1)(v)

)]]
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=
T−1∑
t=0

EHT∼P1

[
1(it,kt)=(2,2) ·KL (N (1, 1),N (1 + ϵ, 1))

]
= KL (N (1, 1),N (1 + ϵ, 1))EHT∼P1

[
T−1∑
t=0

1(it,kt)=(2,2)

]
= KL (N (1, 1),N (1 + ϵ, 1))EHT∼P1

[
NT

22

]
.

We can use Lemma 18 and Lemma 19 to bound the KL-divergence between P1 and P2 by

KL(P1, P2) = EP1 [N
T
22] ·KL

(
N (1, 1),N (1 + ϵ, 1)

)
=

EP1 [N
T
22]ϵ

2

2
≤ 1

2
. (38)

We next need the following result from probability theory that is a consequence of the
Bretagnolle-Huber inequality.

Lemma 20. For any two probability distributions p and q defined on the same space and for
any measurable event F in this space,

p(FC) + q(F ) ≥ 1

2
e−KL(p,q).

Proof. For any probability distributions p and q, we have by the Bretagnolle-Huber inequality
that

dTV(p, q) ≤ 1− 1

2
e−KL(p,q).

For any event F ,

dTV(p, q) ≥ |p(F )− q(F )| ≥ p(F )− q(F ) = 1− p(FC)− q(F ).

Combining the above equations gives that

p(FC) + q(F ) ≥ 1

2
e−KL(p,q). (39)

Taking p = P1, q = P2 and F =
{∑T−1

t=0 X t
22 ≤ T 2/3

log(T )

}
in Lemma 20, we have by Equation

(38) that

Pr
P1

(
T−1∑
t=0

X t
22 >

T 2/3

log(T )

)
+ Pr

P2

(
T−1∑
t=0

X t
22 ≤

T 2/3

log(T )

)
≥ 1

2
e−KL(P1,P2) ≥ 1/4. (40)

Combining Equation (37) with Equation (40) gives

Pr
P2

(
T−1∑
t=0

X t
22 ≤

T 2/3

log(T )

)
≥ 1/8. (41)
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If
∑T−1

t=0 X t
22 ≤ T 2/3

log(T )
, then there must exist some time t such that X t

22 ≤ T−1/3

log(T )
. If X t

22 ≤
T−1/3

log(T )
, then player 2’s envy in expectation at time t for player 1 under µ2 (for sufficiently

large T ) is

X t
11 · 1 +X t

12(1 + ϵ)−X t
21 · 1−X t

22(1 + ϵ) = (1−X t
21) · 1 + (1−X t

22)(1 + ϵ)−X t
21 · 1−X t

22(1 + ϵ)

= 2 + ϵ− 2X t
21 − 2X t

22(1 + ϵ)

≥ ϵ− 2X t
22(1 + ϵ)

≥ ϵ− 2T−1/3(1 + ϵ)

log(T )

= T−1/3 − 2T−1/3(1 + T−1/3)

log(T )

> 0,

implying that X t does not satisfy the envy-freeness in expectation constraints under µ2.
Therefore, Equation (41) implies that

Pr
P2

(EFE for µ2 not satisfied) ≥ Pr
P2

(
T−1∑
t=0

X t
22 ≤

T 2/3

log(T )

)
≥ 1/8. (42)

This contradicts the assumption that ALG satisfies the envy-freeness in expectation con-
straints for µ2 with probability at least 1− 1/T when µ∗ = µ2.

G.1 Proof of Lemma 18

Proof. Define E as the event that the algorithm ALG satisfies the envy-free in expectation
constraints for µ1 and has regret less than T 2/3

log(T )
for µ∗ = µ1. By assumption, PrP1(E) ≥

1− 1/T .

If µ∗ = µ1, then the social welfare maximizing envy-free allocation is

Y µ1 =

[
0 1
1 0

]
.

Furthermore, a fractional allocation X t satisfies envy-freeness in expectation for µ1 only if

X t
21 +X t

22 ≥ 1. (43)

Therefore, for any X t that satisfies envy-freeness in expectation for µ1, the regret at time t
is

⟨Y µ1 , µ∗⟩F − ⟨X t, µ∗⟩F = 4− (2X t
11 + 3X t

12 +X t
21 +X t

22)

= 4− (2(1−X t
21) + 3(1−X t

22) +X t
21 +X t

22)

= −1 +X t
21 + 2X t

22
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≥ X t
22. [Equation (43)]

This implies that the regret when µ∗ = µ1 of ALG when ALG satisfies envy-freeness in
expectation for µ1 is

T · ⟨Y µ1 , µ∗⟩F −
T−1∑
t=0

⟨X t, µ∗⟩F ≥
T−1∑
t=0

X t
22.

By definition, under event E, the regret of ALG for µ∗ = µ1 is at most T 2/3

log(T )
and ALG satisfies

the envy-freeness in expectation constraints for µ1. Therefore, the previous equation implies
that under event E,

T−1∑
t=0

X t
22 ≤

T 2/3

log(T )
. (44)

Recall that NT
22 is the number of times item of type 2 is allocated to player 2. Equation (44)

implies that

EP1 [N
T
22 | E] = EP1

[
T−1∑
t=0

X t
22 | E

]
≤ T 2/3

log(T )
.

This implies that for sufficiently large T ,

EP1 [N
T
22] = EP1 [N

T
22 | E] Pr

P1

(E) + EP1 [N
T
22|¬E] Pr

P1

(¬E)

≤ EP1 [N
T
22 | E] + T · 1

T

≤ T 2/3

log(T )
+ 1

≤ T 2/3. (45)

Equation (44) also implies that for sufficiently large T ,

Pr
P1

(
T−1∑
t=0

X t
22 ≤

T 2/3

log(T )

)
≥ Pr

P1

(E) ≥ 1− 1

T
> 7/8. (46)

Taking the complement of this equation proves Equation (37).
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