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Abstract

We consider the problem of repeatedly auctioning a single item to multiple i.i.d buyers who

each use a no-regret learning algorithm to bid over time. In particular, we study the seller’s

optimal revenue, if they know that the buyers are no-regret learners (but only that their

behavior satisfies some no-regret property — they do not know the precise algorithm/heuristic

used).

Our main result designs an auction that extracts revenue equal to the full expected welfare

whenever the buyers are “mean-based” (a property satisfied by standard no-regret learning

algorithms such as Multiplicative Weights, Follow-the-Perturbed-Leader, etc.). This extends

a main result of [BMSW18] which held only for a single buyer.

Our other results consider the case when buyers are mean-based but never overbid. On

this front, [BMSW18] provides a simple LP formulation for the revenue-maximizing auction

for a single-buyer. We identify several formal barriers to extending this approach to multiple

buyers.
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1 Introduction

Classical Bayesian auction design considers a static auction where buyers participate once. Here,

the study of truthful auctions is ubiquitous following Myerson’s seminal work [Mye81]. But many

modern auction applications (such as ad auctions) are repeated : the same buyers participate in

many auctions over time. Moreover, the vast majority of auction formats used in such settings

are not truthful (e.g. first-price auctions, generalized first-price auctions, generalized second-price

auctions). Even those that are based on a truthful format (such as the Vickrey-Clarke-Groves

mechanism [Vic61, Cla71, Gro73]) are no longer truthful when the repeated aspect is taken into

account (because the seller may increase or decrease reserves in later rounds based on buyers’

behavior in earlier rounds). As such, it is imperative to have a study of non-truthful repeated

auctions.

Over the past several years, this direction has seen significant progress on numerous fronts (we

overview related work in Section 1.1). Our paper follows a recent direction initiated by [BMSW18]

and motivated by empirical work of [NST15]. Specifically, [NST15] find that bidding behavior on

Bing largely satisfies the no-regret guarantee (that is, there exist values for the buyers such that

their bidding behavior guarantees low regret — the paper makes no claims about any particular

algorithm the buyers might be using). This motivates the following question: if buyer behavior

guarantees no-regret, what auction format for the designer maximizes her expected revenue?

[BMSW18] initiated this study for a single buyer. The main focus of our paper is to initiate the

study for multiple buyers. We formally pose the model in Section 2, and overview our main results

here.

The concept of a “mean-based” no-regret learning algorithm appears in [BMSW18], and cap-

tures algorithms which pull an arm with very high probability when it is historically better than

all other arms (formal definition in Section 2). While it is common to design non-mean-based al-

gorithms for dynamic environments, standard no-regret algorithms such as Multiplicative Weights,

EXP3, etc. are all mean-based.1

Main Result (informal — See Theorem 4:) When any number of i.i.d. buyers use bidding strate-

gies which satisfy the mean-based no-regret guarantee, there exists a repeated single-item auction

for the seller which guarantees them expected revenue arbitrarily close to the optimal expected

welfare.

One main result of [BMSW18] proves the special case with just a single buyer. While we defer

technical details of our construction to Section 3, we briefly overview the main challenges here. The

one-buyer [BMSW18] auction is already surprising, as it requires the seller to both (a) give the

buyer the item every round, yet (b) charge them their full value (without knowing their value). The

key additional challenge for the multi-buyer setting is that the seller must now give the item not

just to a buyer in every round, but to the buyer with the highest value. This means, in particular,

that we must set up the auction so that buyers will pull a distinct arm for each possible value, and

yet we must still charge each buyer their full expected value by the end of the auction.

Our auction, like that of [BMSW18], is fairly impractical (for example, it alternates between

running a second-price auction every round, and charging huge surcharges to the winner) and is

1Note also that these canonical algorithms are mean-based even if the learning rate changes over time, as long as
the learning rate is ω(1/T ).
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not meant to guide practice. Still, Theorem 4 establishes that full surplus is possible for multiple

mean-based buyers, and therefore sets a high benchmark for this setting without further modeling

assumptions.

No Overbidding. Indeed, the main impracticality in our Full-Surplus-Extraction auction is that

lures buyers into overbidding significantly, and eventually paying more than their value. In practice,

it may be reasonable for buyers to be clever, and just remove from consideration all bids exceeding

their value (but guarantee no-regret on the remaining ones). To motivate this, observe that over-

bidding is a dominated strategy in all the aforementioned non-truthful auctions. So we next turn

to analyze auctions for clever, mean-based buyers.

Here, the second main result of [BMSW18] characterizes the revenue-optimal repeated auction

via a linear program, and shows that it takes a particularly simple form. On this front, we identify

several formal barriers to extending this result to multiple buyers. Specifically:

• For a single buyer, [BMSW18] write a concise polytope (we call it the ‘BMSW polytope’) char-

acterizing auctions which can be implemented for a single clever mean-based buyer (i.e. being

in this polytope is necessary and sufficient to be implementable). We show that two natural

extensions of this polytope to multiple buyers contain auctions which cannot be implemented

for multiple clever mean-based buyers (we show that being in either natural polytope is nec-

essary, but not sufficient). This is in Section 4.1.

• For a single buyer, [BMSW18] shows that the optimal auction is “pay-your-bid with declining

reserve.2” We show that a natural generalization of this “pay-your-bid uniform auctions with

declining reserve” to multiple buyers captures many extreme points of the multi-buyer BMSW

polytope. But, we also show that such auctions are not necessarily optimal (meaning that

this aspect of [BMSW18] does not generalize to multiple buyers either). This is in Section 4.2.

• Finally, we establish that not only does the particular multi-buyer BMSW polytope not cap-

ture all implementable auctions for clever mean-based buyers, but the space of implementable

auctions is not even convex ! This is in Section 4.3.

While our results are not a death sentence for the future work in the [BMSW18] model for

clever mean-based buyers, the barriers do shut down most natural multi-buyer extensions of their

approach. Still, these barriers also help focus future work towards other potentially fruitful ap-

proaches, which we highlight in Section 5.

1.1 Related Work

There is a vast body of work at the intersection of learning and auction design. Much of this

considers learning from the perspective of the seller (e.g. sample complexity of revenue-optimal

auctions), and is not particularly related [DRY15, CR14, HMR15, DHP16, RS16, MR15, MR16,

GN17, CD17, HT19, GW18, GHZ19, GHTZ19, BCD20].

More related is the recent and growing literature on dynamic auctions [PPPR16, ADH16,

MLTZ16, LP18, MLTZ18, MLTZ19] Like our model, the auction is repeated. The distinction

2That is, each round there is a reserve. Any bid above the reserve wins the item, but pays their bid. The reserve
declines over time.
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between these works and ours is that they assume the buyer is fully strategic and processes fully

how their actions today affect the seller’s decisions tomorrow (whereas we instead model buyers as

no-regret learners).

The most related work to ours is in the [BMSW18] model itself. Here we provide a brief summary

of the main results in [BMSW18] and their connection to our main results. [BMSW18] studies the

one seller one buyer scenario, where the buyer employs a mean-based no-regret algorithm. The

authors present three results, each obtained under different assumptions regarding the behavior of

the buyers. Firstly (as we have already mentioned earlier in the introduction), [BMSW18] shows

that for vanilla mean-based no-regret buyers, [BMSW18] can extract revenue that is an arbitrarily

large fraction of the bidder’s expected value. Our Theorem 4 extends this result to the multiple

buyer setting, overcoming novel technical and conceptual challenges. Second, [BMSW18] designs a

novel (not mean-based) learning algorithm against which the optimal mechanism for the seller is

simply Myerson’s auction in each round. Their proof of this result naturally accommodates multiple

buyers. Finally, [BMSW18] shows that if the buyer is clever and mean-based no regret (where they

do not overbid their value), then the optimal auction has a clean tractable format (pay-your-bid

with declining reserve over time). As we have discussed in the “No Overbidding” section of the

introduction, our work shows several formal barriers in extending these results to multiple buyers.

In summary, our main result extends their first main result to multiple bidders. Their second result

already holds for multiple bidders (so there is nothing for us to extend). Our secondary results

establish formal barriers to extending their final main result to multiple bidders.

Two recent follow-ups have extended the setting in [BMSW18] in a different direction. First,

[DSS19b] considers the problem of playing a two-player game against a no-regret learner. While

technically not an auctions problem, there is thematic overlap with our main result. [DSS19a]

extends the single-buyer results in [BMSW18] to be prior-free. Specifically, they show how to

design auctions achieving the same guarantees as those in [BMSW18] but where the buyer’s values

are chosen adversarially. In comparison to these works, ours is the first to extend the model to

consider multiple buyers.

Finally, recent work of [CHJ20] considers interaction between a learning buyer and a learning

seller. Their seller does not have a prior against which to optimize, and instead itself targets a no-

regret guarantee. In comparison, our seller (like the seller in all previously cited works) optimizes

expected revenue with respect to a prior.

2 Preliminaries

We consider the same setting as [BMSW18], extended to multiple buyers. Specifically, there are

n buyers and T rounds. In each round, there is a single item for sale. Each buyer i has value vi,t
for the item during round t, and each vi,t is drawn from D independently (that is, the buyers are

i.i.d., and the rounds are i.i.d. as well). For simplicity of exposition (and to match prior work), we

assume D has finite support 0 ≤ w1 < w2 < . . . < wm ≤ 1 and we define qj to be the probability

wj is drawn from D.

Each round, the seller presents K arms for the buyers. Each arm is labeled with a bid, and we

assume that one of the arms is labeled with 0 (to represent a bid of “don’t participate”). Note that

the same set of arms is presented to all buyers, and the same set of arms is presented in each round.

In each round t, the seller defines an anonymous auction. Specifically, for all i, t, the seller defines
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ai,t(~b) to be the probability that buyer i gets the item in round t, and pi,t(~b) ∈ [0, bi ·ai,t(~b)] to be the

price buyer i pays, when each buyer j pulls the arm labeled bj . To be anonymous, it must further be

that for all permutations σ of the buyers that (aσ(i),t(σ(~b)), pσ(i),t(σ(~b)) = (ai,t(~b), pi,t(~b)) (the auction

is invariant under relabeling buyers). The only additional constraints on a are that
∑

i ai,t(
~b) ≤ 1,

for all t,~b (item can be awarded at most once), and that b′i > bi ⇒ ai,t(bi;~b−i) ≤ ai,t(b
′
i;
~b−i) for all

i,~b−i, bi, b
′
i (allocation is monotone). p must also be monotone (b′i > bi ⇒ pi,t(bi;~b−i) ≤ pi,t(b

′
i;
~b−i)).

When we state prior work in the single-buyer setting, we may drop the buyer subscript of i (for

instance, we will write a1,t(b1) as at(b)).

2.1 Contextual Bandits

Like [BMSW18], we model the buyers as online learners. Also like [BMSW18], our results apply

equally well to the experts and bandits model, where vi,t serves as buyer i’s context for round t.

Specifically:

• For all subsequent definitions below, fix a buyer i, fix a bid vector ~b−i,t for all rounds t, and

fix ai,t(·).

• For any bid b, buyer i, and round t, define ribt(v) := v · ai,t(b;~b−i)− pi,t(b;~b−i). That is, define

ribt(v) to be the utility during round t that buyer i would enjoy by bidding b with value v.

• For an algorithm S (decides a bid for round t based only on what it observes through rounds t−

1, and its value vi,t)
3 that submits bids bit in round t, its total payoff is P (S) := E[

∑

t ribitt(vi,t)].

The expectation is over any randomness in the bids bit, as S may be a randomized algorithm,

and the randomness in vi,t.

• An algorithm is fixed-bid if vit = vit′ ⇒ bit = bit′ . That is, the algorithm may make different

bids in different rounds, but only due to changes in the buyer’s value. Let F denote the set

of all fixed-bid strategies.

• The regret of an online learning algorithm S is maxF∈F{P (F )− P (S)}.

• An algorithm is δ-low regret if it guarantees regret at most δ on every fixed sequence of

auctions, and fixed bids of the other players. We say that an algorithm is no-regret if it is

δ-low regret for some δ = o(T ).

Like [BMSW18], we are particularly interested in algorithms “like Multiplicative Weights Up-

date:”

Definition 1 (Mean-Based Online Learning Algorithm, [BMSW18]). Let σi,b,s(v) :=
∑

t<s ribt(v).

An algorithm is γ-mean-based if whenever σi,b,s(vi,s) < σi,b′,s(vi,s) − γT (for any b, b′), then the

probability that the algorithm bids b during round s is at most γ. An algorithm is mean-based if it

is γ-mean-based for some γ = o(1).

As noted in [BMSW18], natural extensions of Multiplicative Weights, EXP3, Follow the Per-

turbed Leader, etc. to the contextual setting are all mean-based online learning algorithms.

3In the bandits model, buyer i learns only ribt(v) for the bid b := bit after each round t (and all v). In the experts
model, buyer i learns ribt(v) for all b (and all v).
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2.2 Learners and Benchmarks

Before formally stating our main results, we first provide relevant benchmarks. We use Valn(D) :=

E~v←Dn[maxi vi] to denote the expected maximum value among the n buyers. We use Myen(D) to

denote the expected revenue of the optimal truthful auction when n buyers have values drawn from

D. We make the following quick observation, which holds for any low regret learning algorithm

(and extends an observation made in [BMSW18] for a single buyer).

Observation 2. The seller cannot achieve expected revenue beyond T ·Valn(D)+ o(T ) when buyers

guarantee no-regret, even if the seller knows precisely what algorithms the buyers will use.

Proof. Any strategy for the seller must allow the buyers to bid 0 in every round and not get the

item. This means that the best fixed-bid in hindsight for every buyer guarantees utility at least

0. Therefore, if the buyer is no-regret, they must have utility at least −o(T ). The total expected

welfare the buyers can have together is at most T · Valn(D). As revenue = welfare − utility, this

means that revenue can be at most T · Valn(D) + o(T ).

Finally, we will consider two types of no-regret learners. One type we will consider is simply no-

regret learners who use a mean-based learning algorithm. Second, we will consider no-regret learners

who use a no-regret learning algorithm but never overbid. Specifically, such learners immediately

remove from consideration all bids bit > vi,t, but otherwise satisfy the no-regret guarantee. We refer

to such learners are clever. [BMSW18] motivate such learners by observing that in most (perhaps

all) standard non-truthful auction formats, overbidding is a dominated strategy. For example, it

is always better to bid truthfully than to overbid in a first-price auction, generalized first-price

auction, generalized second-price auction, and all-pay auction.

2.3 Border’s Theorem

Some of our work will use Border’s theorem [Bor91], which considers the following. Consider

a monotone, anonymous (not necessarily truthful) single-item auction, and a fixed strategy s(·)

which maps values to actions. Let x(wj) denote the probability that a buyer using action s(wj)

wins the item, assuming that all other buyers’ values are drawn i.i.d. from D and use strategy s as

well. Border’s theorem asks the following: when given some vector 〈x1, . . . , xm〉, does there exists

a monotone anonymous (not necessarily truthful) single-item auction such that x(wj) = xj for all

j? If so, we say that ~x is Border-feasible. Below is Border’s theorem. We will not actually use the

precise Border conditions in any of our proofs, just the fact that they exist and are linear in ~x.

Theorem 3 (Border’s Theorem [Bor07, CDW11, CKM13]). When the buyers are drawn i.i.d from

D (meaning each buyer’s probability of valuing the item at wj is qj), ~x is Border-feasible if and

only if it satisfies the Border conditions:

n
∑

ℓ≥j

qj · xj ≤ 1− (1−
∑

ℓ≥j

qj)
n ∀j ∈ [m].

3 Full Surplus Extraction from Mean-Based buyers

Here, we show a repeated auction which achieves expected revenue arbitrarily close to T · Valn(D)

when buyers are mean-based (but consider overbidding). We also note that our auction does not

5



depend on the particular mean-based algorithms used. The auction does barely depend on D, but

only in initial “setup rounds” (the auction during almost all rounds does not depend on D). Recall

this guarantee is the best possible, due to Observation 2.

Theorem 4. Whenever n buyers use strategies satisfying the mean-based guarantee, there exists a

repeated auction which obtains revenue T · (1− δ)Valn(D)− o(T ) for any constant δ < 1.

In this language, one main result of [BMSW18] proves Theorem 4 when n = 1. Before diving

into our proof, we remind the reader of the main challenge. In order to possibly extract this much

revenue, the auction must somehow both (a) charge each winning buyer their full value, leaving

them with zero utility, yet also (b) figure out which buyer has the highest value in each round, and

give them the item. The distinction between the n = 1 and n > 1 case is in (b). When n = 1, it is

still challenging to give the buyer the item every round while charging their full value, but at least

the buyer does not need to convey any information to the seller (so, for example, it is not necessary

to incentivize the buyer to pull distinct arms for each possible value — the buyers just need to pay

their full value on average by the end). When n > 1, we need the buyer to pull a distinct arm for

each of their possible values, because we need to make sure that the highest buyer wins the item

(and the only information we learn about each buyer’s value is the arm they pull).

Additional Notation. We now provide our auction and analysis, beginning with some additional

notation for this section. We will divide the T rounds of the auction into phases of 2R consecutive

rounds, where R = Ω(T ). There are P := T/(2R) total phases (so P is a constant, but it will be a

large constant depending on δ). In our contruction, the first m− 1 phases will be the setup phases

and the last P − m + 1 phases will be the main phases. The goal of the setup phases is to align

buyer’s incentives so that they will behave in a particular manner in later phases. The main phases

are where we will extract most of our revenue.

Recall that there are K non-zero arms labeled b1 < . . . < bK . Our construction will use K := P

arms. Because the buyers consider overbidding, the precise bid labels are not important, so long as

they are sufficiently large (concretely, we set bi := 2wm + i). We will sometimes index arms using

bτj := bP+j−τ . This notation will be helpful to remind the reader that bτj is the arm that we intend

to be pulled by a buyer with value wj during main phase τ .4

3.1 Defining the Auction

Intuitively, our auction tries to do the following. In each phase τ , there is a targeted arm bτj for

each possible value wj , so there are m arms that are (intended to be) pulled during each phase.

Ideally, since wj needs to transition from pulling bτ−1j in phase τ − 1 to pulling bτj in phase τ , at

the beginning of phase τ , wj should be indifferent between pulling bτ−1j , wj’s favourite arm in phase

τ − 1; and bτj ,wj’s intended arm for phase τ . Let us for now assume this is true and see how we

design the auction during phase τ (which contains 2R rounds).

The base auction each round is just a second-price auction, where pulling arm bτj submits a

bid of wj. For the first R rounds of each phase, this is exactly the auction executed. Because the

second-price auction is dominant strategy truthful, this lures a mean-based buyer with value wj

into having high cumulative reward for arm bτj (and in particular, strictly higher than any other

4So for example, arm bP−m will first be (intended to be) pulled by buyers with value w1 in phase m+ 1, then by
buyers with value w2 in phase m+ 2, etc.
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arm). For the second R rounds of each phase, the base auction will still be the same second-price

auction, except we will now overcharge each buyer so that their average utility during all 2R rounds

of auction in phase τ is close to zero. In principle, this is possible because the buyers have high

cumulative utility for this arm from the first R rounds, and are purely mean-based (and so they

will pay more than their value to pull an arm which is historically much better than all others).

Now, by design our auction in phase τ gives the item to the highest buyer most of the time,

therefore the expected welfare is almost optimal. Meanwhile, the expected utility is close to 0, which

means we have managed to extract revenue that is almost the full welfare in phase τ . Lastly, notice

that cumulative utility for arm bτ+1
j increases during phase τ , so our phase cannot last forever. If

we set the phase length to be too long, then bτ+1
j will become wj’s favourite arm before phase τ

ends. This is exactly why we need multiple phases instead of one phase. Let us set our phase length

in such a way that at the end of τ , the increase in cumulative utility for arm bτ+1
j is just enough for

wj to be indifferent between bτj and bτ+1
j , then the exact condition we assume at the start of phase

τ is satisfied, but for phase τ + 1. Thus we can safely start a new phase τ + 1 and extract almost

full welfare by the same auction design.

Of course, this is just intuition for why an auction like this could possibly work — significant

details remain to prove that it does in fact work (including precisely the choice of overcharges,

analyzing incentives between phases, etc.). Below is a formal description of our auction.5

Definition 5 (Full Surplus Extraction Auction). The FSE Auction uses the following allocation

and payment rule in each round. There are two steps in each round. First, based on the arm pulled,

a bid is submitted on behalf of the buyer into a secondary auction. Then, the secondary auction is

resolved. There are three types of arms:

• Some arms are dormant. These arms don’t enter the secondary auction (i.e. no item and 0

payment).

• Some arms are active. Pulling arm bP−τ+j = bτj enters a bid of wj into a secondary auction.

• Some arms are retired. Pulling a retired arm enters a bid of wm +1 into a secondary auction.

Which arms are dormant/active/retired change each phase. In addition, the secondary auction

resolves differently for the first m−1 phases (we call these the setup phases) versus the last P−m+1

phases (we call these the main phases). Think of P ≫ m, so the main phases are what matter

most. In any main phase (τ ≥ m):

• Active arms: bP−τ+1 = bτ1 through bP−τ+m = bτm. Dormant: below bP−τ+1. Retired: above

bP−τ+m. Note that by our definition, the index of active arms decreases as τ increases. For

instance, if in nth phase the active arms are bh, bh−1, · · · , bl, then in the n + 1th phase the

active arms are bh−1, bh−2, · · · , bl−1.

• The secondary auction awards the item to a uniformly random buyer who submits the highest

bid.

5There is one technicality, which is that we would like to always have a mean-based learner break ties to pull arm
b0 with probability o(1) during any round where another arm guarantees them non-negative cumulative utility. To
do this, we just decrease all payments defined below by an arbitrarily small ε, but omit this from the definition for
cleanliness.
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• If the winning arm was retired (i.e., submitted a bid of wm + 1), they pay 2wm.

• If the winning arm was active, the winner pays the second-highest bid.

• Additionally, in the second R rounds of a phase, if the highest bid is wj and the second-highest

bid is wℓ, the winner pays an additional surcharge of 2(wj − wℓ).

In any setup phase (τ < m):

• Active arms: bP−τ+1 = bτ1 through bP = bττ . Dormant: below bP−τ+1. Retired: none.

• Let S denote the set of buyers who submitted the highest bid. The secondary auction picks

i∗ uniformly at random from S as a tentative winner.

• If the highest bid is < wτ , then i∗ wins the item.

• If the highest bid is wτ , then i∗ wins the item with probability6 (qτ/
∑

j≥τ qj)
|S|−1, which is

equal to the probability that i∗ wins the item had the buyers participated in a second price

auction and i∗ bids wτ while other buyers bid truthfully.

• If there is a winner, the winner pays the second-highest bid.

• Additionally, in the second R rounds of a phase, if the highest bid is wj and the second-highest

bid is wℓ, the winner (if there is one) pays an additional surcharge of 2(wj − wℓ).

The main phases are the interesting part of the FSE auction where we will argue that mean-

based buyers choose to pull their intended arm and get 0 utility each phase for doing so. The setup

phases are just a technical setup to get incentives to work out, and is the reason why we lose an

arbitrarily small δ fraction of the optimal welfare (because during the setup phases, we aren’t giving

the item to the highest buyer — but fortunately there are just m of P setup phases, and we can

take P to be any large constant ≫ m that we want). A concrete execution of the FSE auction is

given in Appendix A.

We first quickly confirm that the FSE Auction is monotone (proof in Appendix B).

Observation 6. The allocation and payment rule for the FSE auction are both monotone.

3.2 Mean-Based Behavior

Before analyzing the expected revenue of the seller, we first analyze the behavior of mean-based

buyers. The challenge, of course, is that the payoff from each arm depends on the behavior of the

other buyers, who are themselves mean-based. So our goal is to establish that mean-based learning

in the FSE auction forms some sort of “equilbrium,” in the sense that one mean-based buyer pulls

the desired arm almost-always provided that all other buyers pull the desired arm almost-always.

Our first step is characterizing a buyer’s payoff for each arm at each round, assuming that all other

buyers pull the intended arm almost always.

The main steps in our proof are as follows. First, we analyze the cumulative payoff for a buyer

with each possible value for each possible arm, assuming that each other buyer pulls their intended

arm. We then conclude that a buyer with value wj has highest cumulative utility for their intended

6Recall that qj is the probability a buyer’s value for the item is wj .
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arm for the entirety of each phase. However, we also establish that the utility they enjoy during

each phase for their intended arm is 0. This means that every buyer has 0 utility at the end (up to

o(T )), meaning that the seller’s revenue is equal to the expected welfare. Because we give the item

to the highest value buyer whenever they pull the intended arm, the welfare is T · Val(D). We now

proceed with each step.

In each of the technical lemmas below, we let Hs(v, b) denote the cumulative payoff during

rounds 0 to s that a buyer with value v would have enjoyed in hindsight by pulling arm b in

the FSE Auction, assuming that all other buyers pull their intended arm for at least a 1 − o(1)

fraction of the rounds during every main phase τ , and that they pull either their intended arm (if it

exists) or bP (otherwise) during every setup phase τ . We let XV CG(v) denote the probability that a

bidder with value v wins a second-price auction when bidding truthfully against n−1 values drawn

independently from D (ties broken randomly). And we let PV CG(v) denote the interim payment

made by a bidder with value v to a second-price auction, in expectation over n − 1 other values

drawn independently from D.7

Our first lemma will concern the cumulative payoff for arms at the start of each phase.

Lemma 7. At the end of phase τ , the change in cumulative payoff of a buyer with value v for each

arm satisfies:

• For dormant arms b, H2Rτ (v, b)−H2R(τ−1)(v, b) = 0.

• For active arms: H2Rτ (v, b
τ
j )−H2R(τ−1)(v, b

τ
j ) = 2R · (v − wj) ·XV CG(wj)± o(T ).

• For retired arms: H2Rτ (v, bj)−H2R(τ−1)(v, bj) = 2R · (v − 2wm)± o(T ).

Proof Sketch. We provide a complete proof here in the case that other buyers pull the stated arm

for all rounds (rather than a 1− o(1) fraction), and only for the main phases (rather than also for

setup phases). This captures the intuition, but postpones the technical challenges. In Appendix B,

we provide a complete proof for the general case.

The first bullet follows trivially. To see this, observe that if an arm is dormant for phase τ , then

it never awards the item or charges payments, so the cumulative utility doesn’t change.

For active arms, observe that pulling arm bτj enters bid wj into a second price auction where

all other bids are drawn independently from D. This means that the buyer wins the item with

probability XV CG(wj) in each such round.

In terms of payment, observe that the expected payment during the first R rounds is exactly

PV CG(wj) per round. Moreover, the expected payment during the second R rounds is exactly

XV CG(wj) · (2wj−wℓ) = 2wj ·XV CG(wj)−PV CG(wj) per round. Therefore, the added utility during

phase τ is:

2R · v ·XV CG(wj)−R · PV CG(wj)− R · (2wj ·XV CG(wj)) +R · PV CG(wj)

=2R · (v − wj) ·XV CG(wj).

For retired arms, observe that pulling the arm enters bid wm + 1 into a second-price auction,

which surely wins in all rounds. The payment is 2wm. Therefore, the change in cumulative payoff

is 2Rv − 4Rwm.

7Formally, let Xi be independent draws from D for i = 1 to n− 1. Define X0 := v. Let X := maxi≥1{Xi}, and
Y be an indicator random variable for the event that a uniformly random element in argmaxi≥0{Xi} is 0. Then
PV CG(v) := E[X · Y ].
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The above proof captures the main intuition for Lemma 7, but non-trivial extra work is required

for the two mentioned extensions. Still, full proof follows the above outline with one extra step.

While it is generally extremely unwieldy to predict the behavior of multiple no-regret buyers playing

a repeated game (even when those buyers are guaranteed to play a particularly simple no-regret

strategy like Multiplicative Weights Update), our repeated game is especially simple because buyers

have a weakly dominant strategy (for the rounds which are just a second-price auction). Therefore,

we can argue that any mean-based strategies will quickly learn to play their intended arm, so long

as it starts the phase within o(T ) of their favorite. This intuition will be made formal when we

prove Lemma 10 (proof contained in Appendix B).

Using Lemma 7, we can also quickly conclude the cumulative utilities. To help parse the formulas

below, recall that every arm transitions from being initially dormant, to being intended for w1, then

w2, etc., and then retired. However, some arms start out in the middle of this transition (e.g. arm

bP+m−1 is initially intended for wm, and then retires), and some arms end in the middle of this

transition (e.g. arm b1 is dormant until the final phase, when it is intended for w1). For the rest

of the formally stated corollaries/lemmas in this section, we will use terms like o(T ) to keep the

statements clean. However, the precise choice of o(T ) that we prove will be relevant for how these

claims are used in later proofs, and versions of these statements in Appendix B are more precise.

We include them here to help give a clear outline for the rest of the proof.

Corollary 8. At the end of phase τ , the cumulative payoffs for a buyer with value v satisfy:

• If bj is dormant during phase τ (j ≤ P − τ): H2Rτ (v, b) = 0.

• If bj is active during phase τ (j ∈ [P − τ + 1, P − τ +m]):

H2Rτ (v, bj) = 2R ·

(

j+τ−P
∑

k=1

(v − wk) ·XV CG(wk)

)

± o(T ).

• If bj is retired during τ (j ≥ P − τ +m+ 1):

H2Rτ (v, b) = 2R ·

(

(τ −m) · (v − 2wm) +
m
∑

k=1

(v − wk) ·XV CG(wk)

)

± o(T ).

Lemma 7 and Corollary 8 now starts to make our analysis transparent: Consider any particular

value wj and their cumulative utility for any particular arm bℓ. During every phase that bℓ is

dormant, the cumulative utility doesn’t change. During every phase that bℓ is retired, the cumulative

utility strictly decreases. During every phase that bℓ is intended for a value wk, with k > j, the

cumulative utility strictly decreases (because XV CG(wk) > 0 for all k). During every phase that

bℓ is intended for a value wk, with k < j, the cumulative utility strictly increases. During the

phase where bℓ is intended for wj , the cumulative utility stays the same. We can now establish that

mean-based buyers pull the intended arm during each phase.

Lemma 9. For all τ , at the start of each phase τ , when j ≤ τ , a buyer with value wj has highest

cumulative utility for arm bτj , and also bτ−1j . Specifically, for all other arms bℓ:

H2R(τ−1)(wj , b
τ−1
j )± o(T ) = H2R(τ−1)(wj , b

τ
j ) > H2R(τ−1)(wj, bℓ) + Ω(T ).
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When j > τ , for all bℓ 6= τ , H2R(τ−1)(wj, b
τ
τ ) > H2R(τ−1)(wj, bℓ) + Ω(T ).

Lemma 10. For all τ , assuming that all other buyers pull their intended arm except for o(T )

rounds, a mean-based buyer with value wj pulls arm bτj (if it exists) for the first R rounds, except

for at most o(T ) rounds. Otherwise, they pull arm bP = bττ for the first R rounds, except for at

most o(T ) rounds.

Lemma 11. For all τ , assuming that all other buyers pull their intended arm except for o(T )

rounds, a mean-based buyer with value wj pulls arm bτj (if it exists) for the last R rounds, except

for at most o(T ) rounds. Otherwise, they pull arm bP = bττ for the last R rounds, except for at most

o(T ) rounds.

Finally, we combine everything together to conclude the following:

Proposition 12. When all buyers are mean-based, they all pull their intended arm in the FSE

Auction, except for at most o(T ) rounds.

3.3 Analyzing the Revenue

Finally, we show that when all buyers pull their intended arm, the FSE auction extracts full surplus.

Proof of Theorem 4. Except for the setup phases, and for rounds where buyers do not pull their

intended arm, the auction gives the item to the highest buyer. Therefore, the expected welfare of

the auction is at least (1−m/P )T ·Val(D)− o(T ). Moreover, Lemma 7 establishes that through an

entire phase, the cumulative utility of a buyer for pulling their intended arm is 0± o(T ). Therefore,

the total utility of the mean-based buyer is at most o(T ). Therefore, the revenue is at least (1 −

m/P )T · Val(D)− o(T ). Setting P ≥ m/δ completes the proof.

4 Clever Mean-Based Buyers

In this section we consider clever mean-based buyers, and identify three formal barriers to developing

optimal auctions for multiple clever mean-based buyers. We develop each barrier in the subsections

below. Section 4.1 reminds the reader of the [BMSW18] Linear Program, which exactly captures the

optimal auction for a single clever mean-based buyer, and provides a natural extension to multiple

buyers.

4.1 A Linear Programming Upper Bound

We first remind the reader of the [BMSW18] Linear Program, and give a natural extension to

multiple buyers. We first explicitly define variables for the results of a repeated auction.

Let A be a repeated auction with n i.i.d buyers of value distribution D. For each buyer i, let Si

denote a strategy which takes as input a value vit for round t (and all other information available

from previous rounds) and outputs an arm bSi

it (vit) to pull in round t. Let ~v := 〈vit〉i∈[n],t∈T , which

is drawn from the product distribution ×nTD. We use the following notation:

RevA(D, S1, . . . , Sn) := E
~v

[

n
∑

i=1

∑

t

pi,t

(

bSi

it (vit); b
S−i

−it (v−it)
)

]

(expected revenue of the auction);
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Revn(D, S1, . . . , Sn) := max
A
{RevA(D, S1, . . . , Sn)} (maximum attainable revenue for S1...Sn);

XA
ij (D, S1, . . . , Sn) =

1

T
E
~v

[

∑

t

ait

(

bSi

it (wj); b
S−i

−it (v−it)
)

]

(average allocation probability when vi = wj);

Y A
ij (D, S1, . . . , Sn) =

1

T
E
~v

[

∑

t

ait

(

wj; b
S−i

−it (v−it)
)

]

(average allocation probability when bid is wj);

UA
ij (D, S1, . . . , Sn) =

1

T
E
~v

[

∑

t

wj · ait

(

bSi

it (wj); b
S−i

−it (v−it)
)

− pit

(

bSi

it (wj); b
S−i

−it (v−it)
)

]

(average utility when vi = wj).

Definition 13 (Auction Feasible). A tuple of m-vectors (x∗, y∗, u∗) is n-buyer auction feasible if

there exists a repeated auction A, such that for all γ = o(T ), whenever n buyers with values

drawn i.i.d. from D run clever γ-mean-based strategies S1, . . . , Sn, then ∀i, X
A
ij (D, S1, . . . , Sn) =

x∗j ±O(γ); Y A
ij (D, S1, . . . , Sn) = y∗j ±O(γ);UA

ij (D, S1, . . . , Sn) = u∗j ±O(γ). We call (x∗, u∗) n-buyer

auction feasible if there exists y∗ such that (x∗, y∗, u∗) is n-buyer auction feasible.

One key insight in [BMSW18] is that the space of auction feasible tuples is convex and can

be characterized by simple linear equations. Below, note that the “only if” direction is slightly

non-trivial, and we rederive it later for arbitrary n. The “if” direction requires designing an auction

(for which we refer the interested reader to [BMSW18, Theorem 3.4]). We will not rederive the “if”

direction, although we define the relevant auction later as well.

Theorem 14 ([BMSW18]). (x, u) is 1-buyer auction feasible if and only if it satisfies the BMSW

constraints:8

ui ≥ (wi − wj) · xj , ∀i, j ∈ [m] : i > j,

xi ≥ xj , ∀i ∈ [m], i > j,

ui ≥ 0, xi ∈ [0, 1], ∀i ∈ [m].

Intuitively, the first BMSW constraint is the interesting one, which is necessary for the buyer

to not regret pulling arm bj when their value is wi (again recall this is non-trivial, but we argue

this shortly as a special case for general n). The second constraint is necessary because the auction

must be monotone. The final constraint is necessary because the auction must have a null arm, and

because all allocation probabilities must be in [0, 1] every round.

[BMSW18] also observe that the expected revenue of an auction A can be computed as a

linear function of XA
ij (D, S1, . . . , Sn) and UA

ij (D, S1, . . . , Sn) (because revenue = welfare − utility).

Therefore, Theorem 14 enables a simple LP formulation to find the optimal auction for clever

buyers.

We consider two natural attempts to generalize Theorem 14, and show that both hold only in

the ‘only if’ direction. The reason the BMSW constraints don’t work verbatim for multiple buyers

is that the feasibility constraints are wrong: it is not feasible to (for instance) have each buyer win

the item with probability 1 every round. Indeed, there is only one copy of the item, implying (for

8In fact, the ‘only if’ portion of this theorem holds when replacing the clever mean-based buyer with just a clever
buyer. But the ‘if’ portion requires the stronger assumption of mean-based learning.
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instance) that n
∑

i qi · x(wi) ≤ 1, but also stronger conditions. These conditions are known as

Border’s constraints from Theorem 3 [Bor91].

Proposition 15. A tuple (x, y, u) is n-buyer auction feasible only if it satisfies the n-buyer BMSW

constraints below. A tuple (x, u) is n-buyer auction feasible only if it satisfies the reduced n-buyer

BMSW constraints.9

n-buyer BMSW Constraints Reduced n-buyer BMSW Constraints

ui ≥ (wi − wj) · yj, ∀i, j ∈ [m] : i > j, ui ≥ (wi − wj) · xj , ∀i, j ∈ [m] : i > j,

yi ≥ xi, ∀i ∈ [m],

ui ≥ 0, ∀i ∈ [m], ui ≥ 0, ∀i ∈ [m],

~x satisfies Border’s constraints for n buyers, ~x satisfies Border’s constraints for n buyers,

~x, ~y monotone. ~x monotone.

Proof. First, we prove the proposition for tuples (x, y, u). Assume that a tuple (x, y, u) is n-buyer

auction feasible, and consider the auction that matches it.

We know that ~y must be monotone, because higher arms must award the item more often.

Similarly, we know that ~x must be monotone, because whenever two values pull different arms, the

higher value must pull a higher arm (again because of monotonicity of the auction).

We know that ~x must satisfy Border’s condition for n buyers, because ~x determines the probabil-

ity that the buyer actually gets the item using their strategy throughout the course of the auction.

In other words, the auction “have the buyers report a strategy for the repeated auction. Run those

strategies and pick a uniformly random round. Award the item according to that round.” is a

single-item auction which gives a buyer with value wj the item with probability exactly xj (over the

randomness in other buyers drawing their values i.i.d. from D). Because this is a feasible, monotone

auction, it must satisfy Border’s constraints.10

Clearly, ui ≥ 0 because buyers can always pull the null arm every round to get 0 payoff, and

they have no regret.

To see that yi ≥ xi, recall that a clever buyer never overbids. This means that they always pull

an arm no higher than wi. Because the auction is monotone, this means that during every round,

arm i gives the item with (weakly) higher probability than the arm that a buyer with value wi pulls.

Because this holds every round, it clearly holds on average as well.

Finally, to see that ui ≥ (wi − wj) · yj, observe that buyers with value wi must not regret

pulling arm wj. Recall that arm wj can charge at most wjyj on average, and awards the item on

average with probability yj . So the buyer’s utility for this arm is at least (wi − wj) conditioned on

winning the item, and the item is won with probability yj (meaning their average utility is at least

(wi − wj)yj). Because the buyer is no-regret, ui must exceed this.

This completes the proof for tuples (x, y, u). Observe that we have not used the fact that the

buyers are mean-based, just that they are clever. Moreover, we have only used the fact that buyers

9In fact, this claim holds when replacing mean-based clever buyers with just clever buyers, just like the ‘only if’
part of Theorem 14.

10Note that we cannot say the same about ~y — an undesirable arm can promise the item with probability 1, as
long as no one actually pulls it. As an example, consider running a first-price auction every round. No one would
pull arm wm, but doing so would indeed win the item with probability 1.
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are clever to conclude yi ≥ xi (all other constraints hold just by the fact that the buyer guarantees

no-regret).

To see the proposition for tuples (x, u), assume that there exists a y such that (x, y, u) is n-buyer

auction feasible. Then yi ≥ xi, and therefore ui ≥ (wi − wj) · yj ≥ (wi − wj) · xj , as desired. The

other constraints are copied immediately from the fact that (x, y, u) is n-buyer auction feasible.

This completes the proof for tuples (x, u).

We next turn to see whether the other direction holds, as in Theorem 14 for the single-buyer

case. If it did, then we could again write a linear program to find the optimal n-buyer feasible

auction, because the expected revenue can be written as a function of (x, u). However, we provide

an example showing that this extension is false.

Theorem 16. There exist (x, y, u) that satisfy the n-buyer BMSW Constraints but are not n-buyer

auction feasible, and (x, u) that satisfy the Reduced n-buyer BMSW Constraints but are not n-buyer

auction feasible.

We provide a proof of Theorem 16 in Appendix C, and overview the key properties of our

construction for (x, u) here, and highlight why such a construction cannot arise when n = 1 (aside

from the fact that it contradicts Theorem 14). Our construction for (x, y, u) simply takes this

construction and sets x = y.

One aspect of our construction is that x is an extreme point of the Border polytope. That is,

it cannot be written as a convex combination of ≥ 2 distinct points that also satisfy the Border

constraints. This immediately implies that any auction which matches (x, u) must have buyers with

value wj receive the item with probability xj in every single round (except for o(T )). This is because

x is a convex combination of the allocation probabilities in each fixed round, and the allocation

probabilities in each fixed round must be in the Border polytope. Because x is an extreme point,

all the allocations during each round must be x itself.

The second key aspect of our construction is that we will have the buyer with value w4 strictly

prefer arm w2 to all other arms, and the buyer with value w3 strictly prefer arm w1 to all other arms.

We defer to the full proof an explanation for why this aspect drives our example, but we elaborate

here on why these two key properties can’t coexist when n = 1. When n = 1, the extreme points

of the Border polytope are exceptionally simple: there exists a j such that xℓ = 1 for all ℓ ≥ j, and

xℓ = 0 for all ℓ < j. For any x with this property, it cannot also be that w4 strictly prefers w2 to

all other arms, while w3 strictly prefers w1. Indeed, if j = 1, then all buyers weakly prefer w1 to

all other arms. If instead j ≥ 2, then a buyer with value w3 weakly prefers arm w2 to arm w1. But

with two buyers, the Border polytope is rich enough to have both properties simultaneously.

We defer further details to Appendix C, and quickly conclude with the main point of this

section: there is a natural extension of the BMSW conditions to n buyers, which are necessary but

not sufficient to characterize tuples which are n-buyer auction feasible.

4.2 Uniform Auctions with Declining Reserves

In this section, we consider the following possibility: although n-buyer BMSW constraints don’t

characterize the n-buyer feasible auctions, it is conceivable (although perhaps unlikely) that the

Linear Programming solution (optimizing expected revenue subject to n-buyer BMSW constraints)

happens to always yield an n-buyer feasible auction. The reason this is a priori possible is because
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the objective function and BMSW constraints are related: the objective function depends on D, and

so do the n-buyer Border constraints (this is another way in which n-buyer and 1-buyer auctions

differ: 1-buyer Border constraints don’t depend on D).

For the single-buyer case, [BMSW18] shows that not only is every tuple satisfying the BMSW

constraints 1-buyer auction feasible, but the auction witnessing this is particularly simple. First,

whenever the buyer gets the item, they pay their bid (and in each round, each arm gives the item

with probability 0 or 1). Second, the minimum winning bid is declining over time. We generalize

both definitions below to multiple buyers, and show a connection between these auctions and certain

types of tuples which satisfy the n-buyer BMSW conditions.

Definition 17 (Pay-your-bid). A repeated auction is pay-your-bid if pi,t(~b) = bi · ai,t(~b) for all i, t.

Definition 18 (Uniform Auction with Declining Reserve). A repeated auction is a uniform auction

with declining reserve when: (a) there exists a reserve rt for every round t which is monotonically

decreasing in t, and (b) in each round the item is awarded to a uniformly random buyer among

those with bit ≥ rt.

Definition 19 (Correspondence). We call (x, y, u) the corresponding tuple of repeated auction A

if for 0-mean-based strategies S1, . . . , Sn and all i, j: XA
ij (D, S1, . . . , Sn) = xj; Y

A
ij (D, S1, . . . , Sn) =

yj;U
A
ij (D, S1, . . . , Sn) = uj.

11

In this language, [BMSW18] shows that when n = 1, every tuple which satisfies the BMSW

conditions can be implemented as a pay-your-bid uniform auction with declining reserve (and this

establishes the ‘if’ direction of Theorem 14). Due to Theorem 16, this claim clearly cannot extend

to n > 1. However, we show that certain kinds of natural tuples can all be implemented as pay-

your-bid uniform auctions with declining reserves.

Theorem 20. Consider any repeated auction A and its corresponding tuple (x, y, u). If (x, y, u)

satisfies the n-buyer BMSW constraints, and x = y, and A is pay-your-bid, then A is a uniform

auction with declining reserve.

Before proving Theorem 20, we highlight why these are natural tuples to consider. First, recall

the BMSW constraint ui ≥ (wi − wj) · yj. In order for this constraint to possibly be tight, it must

be that arm wj charges wj in every round (i.e. the auction is pay-your-bid). There is also a BMSW

constraint yi ≥ xi. Clearly, this constraint is only tight when yi = xi. So such auctions naturally

capture certain extreme points of the n-buyer BMSW polytope. Similarly, for the reduced n-buyer

BMSW constraints, observe that in order for ui ≥ (wi−wj) ·xj to be tight it must both be the case

that the auction is pay-your-bid and that yj = xj . So again, these conditions form a natural subset

of extreme points of the reduced n-buyer BMSW polytope.

Proof of Theorem 20. We first prove that A has the following “uniform allocation” property: during

every round, let S denote the set of arms which award the item with non-zero probability. Then

the item is awarded uniformly at random to a buyer who pulled an arm in S. To see this, consider

what happens when 0-mean based buyers participate in auction A. Recall first that because the

auction is pay-your-bid, that a buyer with value wj gets 0 cumulative utility from bidding wj. This

means that as long as any arm wℓ, for ℓ < j, has historically awarded the item in > 0 rounds,

11Observe that this is always well-defined, as the unique 0-mean-based strategy is Follow-the-leader.
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a 0-mean-based buyer will never pull arm j. This means that there is at most one value wj who

would pull their own arm and have a non-zero probability of winning the item.

So let j∗ denote the lowest-indexed value that pulls with non-negligible probability an arm that

wins the item with non-zero probability. Then all values wj , for j > j∗ also pull an arm that wins

the item with non-zero probability. And moreover, all such wj pull an arm wℓ for ℓ < j. Now, we

can use the fact that x = y to conclude that the bid wj and wℓ must win the item with identical

probability. To see this, observe that in every round, arm wj wins the item with probability at

least as much as the buyer with value wj (because buyers never overbid). Therefore, in order to

possibly have x = y, it must be that these two probabilities are the same in every round. But now,

we can chain these claims together: value wj∗+1 must pull arm wj∗ , so they must award the item

with the same probability. In general, for all j > j∗, value wj must pull an arm wℓ for ℓ ∈ [j∗, j−1].

Therefore, a proof by induction concludes that all values wj for j > j∗ must pull an arm that gives

them the same winning probability as wj∗, and A must have the uniform allocation property.

Now that A has the uniform allocation property, there is a well-defined reserve in each round

(the minimum bid that can win the item). The remaining task is to show the reserve decreases over

time.

Consider a round s with reserve rs, and assume for contradiction that we have at least one

round with a reserve < rs. Then consider when the buyer has value rs during round s. Because in

some previous round, the reserve was < rs, we know that the buyer with value rs has cumulative

utility > 0 for the arm immediately below rs, and therefore does not pulls their own arm (which

gives 0 cumulative utility because the auction is pay-your-bid). Therefore, during round s, a buyer

with value rs must pull an arm wj < rs. Because x = y, arm wj must also be above the reserve,

contradicting that wj < rs but rs is the reserve.

The first half of the proof establishes that the auction must be a uniform auction, and the second

half establishes that the reserve must be monotonically declining.

With Theorem 20 in mind, another possible avenue towards characterizing optimal n-buyer

feasible auctions would be through pay-your-bid uniform auctions with declining reserves. To this

end, we first show that the optimal pay-your-bid uniform auction with declining reserve can be found

by a linear program. However, we also show that examples exist where the optimal n-buyer feasible

auction strictly outperforms the best pay-your-bid uniform auction with declining reserve. Recall

again that Theorem 14 establishes that the best 1-buyer feasible auction is always a pay-your-bid

uniform auction with declining reserve. The proof is in Appendix D.

Theorem 21. The optimal12 pay-your-bid uniform auction with declining reserve can be found by

a linear program of size Poly(m). However, there exist 2-buyer instances where the optimal 2-buyer

feasible auction strictly outperforms the best pay-your-bid uniform auction with declining reserve.

4.3 Non-convexity of n-buyer Feasible Auctions

Finally, we consider the possibility that while the n-buyer BMSW constraints don’t capture the

space of n-buyer feasible auctions, perhaps some other compact, convex space does. This too is

not the case, as we show that the space of n-buyer feasible triples is non-convex (subject to one

technical restriction).

12By optimal we mean the auction achieves the best revenue if all buyers run 0-regret algorithms. It is easy to see
that when buyers have γ-regret, the revenue is within O(nγ) of the revenue when buyers have 0-regret.
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Theorem 22. Let P denote the set of all (x, y, u) that are n-buyer feasible auctions where the bid

space is equal to the support of D. Then P is not necessarily convex, even when n = 2.

We prove Theorem 22 in Appendix E by construction, and defer technical details. We note

that Theorem 22 provides an alternative proof that the n-buyer BMSW constraints do not capture

n-buyer feasible auctions (if they did, the space would be convex). It does not imply anything

regarding the reduced n-buyer BMSW constraints.

5 Conclusion

We study the repeated sale of a single item to multiple mean-based no-regret buyers. Our main result

designs an auction which extracts the full expected value as revenue from the buyers (Section 3).

Our other results identify several formal barriers to extending the analysis of [BMSW18] to multiple

clever, mean-based buyers (Section 4).

While our work resolves the multi-buyer study of mean-based buyers, there are many natural

directions in the study of clever mean-based buyers. For example:

• Our work shows that the BMSW constraints are necessary but not sufficient for clever mean-

based buyers. Are there other classes of clever no-regret learners for which variants of the

BMSW constraints are necessary and sufficient? Or at least for which the space of imple-

mentable auctions is convex?

• We show that natural generalizations of the single-buyer BMSW results to multiple clever

mean-based buyers fail. Is there a significantly different approach to characterize optimal

auctions for clever mean-based buyers?

• Finally, can simple auctions approximate the optimum? Note that even for a single buyer,

the BMSW auction is unboundedly better than any truthful auction. But perhaps the pay-

your-bid uniform auction with declining reserve is a natural starting point (as it is optimal

for a single buyer).

In addition, [BMSW18] provides an online learning algorithm that is not mean-based, where

the seller’s optimal achievable revenue against such learners is simply that of Myerson’s optimal

auction per-round. Given our main result, it is also important to further study classes of online

learning algorithms which are not mean-based, and determine which classes also allow for full surplus

extraction.
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A Example of the FSE Auction

In this section we describe the behavior of mean based no regret buyers in the FSE auction for a

concrete example.

Let us consider an example where there are two buyers participating in our full surplus extraction

auction, and the distribution D is a uniform distribution over {w1, w2, w3, w4}. Here m, the support

size of D, is equal to 4.

The first 3 phases are the set up phase, where the purpose is to make buyer pull a distinct arm

when they have each distinct value after the set up phases. For instance, in the first phase, only

20



· · ·

active arms dormant arms

bP bP−1 bP−2 bP−3 bP−4 bP−5 b1

pulled by w1, w2, w3, w4

submit bid w1

Figure 1: support size m = 4, set up phase (τ = 1)

· · ·

active arms dormant arms

bP bP−1 bP−2 bP−3 bP−4 bP−5 b1

pulled by w2, w3, w4

submit bid w2
pulled by w1

submit bid w1

Figure 2: support size m = 4, set up phase (τ = 2)

· · ·

active arms dormant arms

retired arms

bP bP−1 bP−2 bP−3 bP−4 bP−5 b1

pulled by w4 pulled by w1

submit bid w4 submit bid w1

Figure 3: support size m = 4, main phase (τ = 5)

· · ·

active arms dormant arms

retired arms

bP bP−1 bP−2 bP−3 bP−4 bP−5 b1bP−6

pulled by w4 pulled by w1

submit bid w1submit bid w4

Figure 4: support size m = 4, main phase (τ = 6)

arm bP is active, and all other arms are dormant (which means these arms will not give the item

and will also not charge anything). We will see that both buyers, no matter their value, will choose

to pull bP in this phase. However, starting from phase 2, the buyers’ choice of arm will become

more and more affected by their value.

In each round of phase 1, if a buyer pulls the arm bP , then a bid of w1 is entered into the second

price auction. Assuming that when a buyer gets 0 utility, they tie break favoring getting the item,

no matter what the two buyer’s values are, they will both choose to pull arm bP , so S the set of

buyers who submits the highest bid is just the set of both buyers. Each buyer wins with probability

1/4, because this is their probability of winning had they participated in a second price auction

with two buyers and submitted a bid of w1. As for the winning buyer’s payment, in the first R
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rounds of the phase, they will pay w1 the second price, and in the second R rounds of the phase

they will pay w1 + 2(w1 − w1) = w1, the second price plus the surcharge (which is zero in this

phase). At the end of phase 1, a buyer with value w1 has cumulative utility 0 for arm bP , making

the w1-valued buyer ambivalent between arms bP and bP−1. Meanwhile a buyer with value wi has

positive cumulative utility 2R · (wi − w1) for any i > 1 and strictly prefers bP to other arms.

In phase 2, the active arm range has increased to include wP and wP−1. wP will now submit a

bid of w2 (in second price auction) when pulled, while wP−1 will submit a bid of w1. In phase 2, a

buyer with value w2, w3, w4 will continue to pull arm bP due to the previously accumulated utility,

but a buyer with value w1 will quickly learn to pull bP−1 as its cumulative utility of arm bP becomes

negative (because it sometimes gives the item to the buyer with a price above their value). In a

similar manner, w2 will become ambivalent between bP and bP−1 towards the end of phase 2 and

will learn to switch to bP−1 in phase 3 (while w1 will switch to bP−2).

By the start of phase 4, the buyers will now pull distinct arms when they draw different values

and the repeated auction enter the main phases. In the main phases the auction begins to extract

revenue close to the full welfare by ensuring that the buyers get on average zero utility regardless

of their value in each phase. For instance, in phase τ = 5, the arm bP has retired, and arms

bτ1 = bP−5+1 = bP−4 to bτ4 = bP−5+4 = bP−1 are the active arms representing different bids in the

support of D (e.g. pulling bP−1 submits a bid of w4, which pulling bP−4 submits a bid of w1).

The cumulative utility works out in a way where wi’s preferred arm is bP−5+i for all i ∈ [4]. Let’s

say buyer one has value w3, and buyer two has value w1 in a particular round in the phase, then

buyer one will pull arm bP−2 and buyer two will pull arm bP−4. buyer one will get the item since

they pulled a higher arm (and thus submitted a higher bid). If this particular round is among

the first R rounds, then buyer one will pay w1, the second price. Otherwise, buyer one will pay

w1 +2(w3−w1) = 2w3−w1, the second price plus the surcharge. Since there are roughly the same

number of rounds where buyer one has value w3 and buyer two has value w1 during the first R

rounds vs in the second R rounds of the phase, on average buyer one pays 1/2(w1+2w3−w1) = w3

per round conditioned on buyer one having value w3 and buyer two having value w1. It is easy to

generalize this and see that buyer one pays on average w3 when its value is w3, regardless of buyer

two’s values.

B Omitted Proofs from Section 3

Note that in this section we consider quantities that can be computed only based on D and number

of buyers n to be a constant (for instance mini(wi−wi−1), the expected utility from a second price

auction with n i. i.d buyers, given that our buyer’s value is vj). This is because 1/T can be made

arbitrarily small compared to any of these quantities.

Proof of Observation 6. The allocation rule is obviously monotone, as higher-indexed arms submit

a higher bid to the secondary auction (and then the secondary auction selects the highest bid). The

payment rule is obviously monotone for the first R rounds, since it is exactly a second-price auction.

For the second R rounds, the initial payment from the second-price auction is again clearly

monotone. The surcharge is also monotone, as the second-highest bid is fixed independently of the

winner’s arm, and wj is monotone in the arm selected.

Finally, it is clear that the payment made remains monotone including the retired arms, as the

payment of 2wm exceeds the maximum possible value of 2(wm−wℓ) +wℓ that an active arm might
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pay.

We define ∆(D) = mini(wi − wi−1). For all remaining proofs in this section, we will assume

α(τ) = o(1) for each phase τ , which implies that α(τ) ≤ ∆(D)·XV CG(w1)
16nP

= Θ(1). We will set α in our

last proof.

Lemma 23. (precise statement of Lemma 7) Assume in τ and each phase before τ , each buyer

pulls a none intended arm only α(τ) fraction of rounds, then at the end of phase τ , the change in

cumulative payoff of a buyer with value v for each arm satisfies:

• For dormant arms b, H2Rτ (v, b)−H2R(τ−1)(v, b) = 0.

• For active arms: H2Rτ (v, b
τ
j )−H2R(τ−1)(v, b

τ
j ) = 2R · (v − wj) ·XV CG(wj)± 2R · 4nα(τ).

• For retired arms: H2Rτ (v, bj)−H2R(τ−1)(v, bj) = 2R · (v − 2wm)± 2R · 4nα(τ).

Proof. Note that the set up phase is designed in such a way that, when buyer i pulls an active arm

bτj , assuming other buyers all pull their intended arms, buyer i’s expected utility in round t of a set

up phase is the same as that of round t of the main phase. Therefore we do not need to distinguish

these two kinds of phases when calculating historical utility in our proof.

The first bullet follows trivially. To see this, observe that if an arm is dormant for phase τ , then

it never awards the item or charges payments, so the cumulative utility doesn’t change.

For active arms, observe that pulling arm bτj enters a bid of wj into a second price auction where

all other bids are drawn independently from D (except in a n · α(τ) fraction of the rounds). This

means that the buyer wins the item with probability XV CG(wj) in each such round.

In terms of payment, observe that the expected payment during the first R rounds is exactly

PV CG(wj) per round. Moreover, the expected payment during the second R rounds is exactly

XV CG(wj) · (2wj − wℓ) = 2wjXV CG(wj) − PV CG(wj) per round. We also observe that in a round

t when the other buyers are not pulling the desired arms, if t is within the first R rounds, the

expected utility is in the range [0, v], and if t is within the second R rounds, the expected utility

is in the range [min(0, v − 2wj),max(0, v − wj)]. One can verify that the utility difference from

expected is within 2(v + wj) ≤ 4. Therefore, the added utility during phase τ is:

2R · v ·XV CG(wj)−R · PV CG(wj)− R · (2wjXV CG(wj)) +R · PV CG(wj)

± ·(2R) · nα(τ) · 2(v + wj)

= 2R · (v − wj) ·XV CG(wj)± (2R) · 4nα(τ).

For retired arms, observe that pulling the arm enters a bid of wm + 1 into a second-price

auction, which surely wins in all rounds (except the nα(τ) fraction where other buyers may not

pull the intended arm). The payment is 2wm. Therefore, the change in cumulative payoff is

2Rv − 4Rwm ± 2R · nα(τ)(v − 2wm) = 2Rv − 4Rwm ± 2R · 4nα(τ).

Corollary 24. (precise statement of Corollary 8) Assume in τ and each phase before τ , each buyer

pulls a none intended arm only α(τ) fraction of rounds, then at the end of phase τ , the cumulative

payoffs for a buyer with value v satisfy:

• If bj is dormant during phase τ (j ≤ P − τ): H2Rτ (v, b) = 0.
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• If bj is active during phase τ (j ∈ [P − τ + 1, P − τ +m]):

H2Rτ (v, bj) = 2R ·

(

j+τ−P
∑

k=1

(v − wk) ·XV CG(wk)

)

± 8n · α(τ) · T.

• If bj is retired during τ (j ≥ P − τ +m+ 1): Let a := P +m− j. Then:

H2Rτ (v, b) = 2R ·

(

(τ − a) · (v − 2wm) +
m
∑

k=1

(v − wk) ·XV CG(wk)

)

± 8n · α(τ) · T.

Proof. The proof follows by just repeatedly applying Lemma 23. If bj is dormant, then bj was

dormant in all previous rounds, so the claim trivially follows.

If bj is active, then it is intended for a buyer with value wj+τ−P during phase τ , a buyer with

value wj+τ−P−1 in the previous phase, and in general intended for a buyer with value wj+τ−ℓ−P in

phase τ − ℓ for all ℓ ∈ [0, j + τ − P − 1] (where the intended buyer vary from wj+τ−P to w1). Prior

to being active, the arm was dormant. So the sum just sums up Lemma 24 over all phases.

If bj is retired, then it was retired for some number of previous rounds, and then prior to that

it was active. a = P +m− j is the last round where the arm was active. Once a is computed, the

sum follows by applying bullet three of Lemma 7 to all retired rounds, and bullet two to the active

rounds.

Lemma 25. (precise statement of Lemma 9 part 1) For all τ > 1, assume in each phase until

τ , each buyer pulls a none intended arm only α(τ) fraction of rounds, then at the start of phase

τ , a buyer with value wj where j ≤ τ has highest cumulative utility for arm bτj , and also bτ−1j .

Specifically, for all other arms bℓ:

H2R(τ−1)(wj, b
τ−1
j )± 16n · α(τ) · T = H2R(τ−1)(wj, b

τ
j ) > H2R(τ−1)(wj, bℓ) + ∆(D) ·XV CG(w1) · R.

Proof. This follows immediately from Corollary 24. Let err = 8n · α(τ) · T . We know that

H2R(τ−1)(wj, b
τ
j ) = H2R(τ−1)(wj, bP+j−τ) = 2R ·

(

j−1
∑

k=1

(wj − wk) ·XV CG(wk)

)

± err.

First we will show our claim for all active arm bτℓ where ℓ 6= j.

H2R(τ−1)(wj, b
τ
ℓ ) = H2R(τ−1)(wj , bP+ℓ−τ) = 2R ·

(

ℓ−1
∑

k=1

(wj − wk) ·XV CG(wk)

)

± err.

Thus

H2R(τ−1)(wj , b
τ
j )−H2R(τ−1)(wj, b

τ
ℓ )

= 2R ·

(

j−1
∑

k=1

(wj − wk) ·XV CG(wk)

)

− 2R ·

(

ℓ−1
∑

k=1

(wj − wk) ·XV CG(wk)

)

± err
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= 2R ·

(

1[ℓ ≤ j] ·

j−1
∑

k=ℓ

(wj − wk) ·XV CG(wk) + 1[ℓ > j]
ℓ−1
∑

k=j

(wk − wj)XV CG(wk)

)

± err.

we conclude that when l = j + 1, H2R(τ−1)(wj, b
τ
j ) = H2R(τ−1)(wj, b

τ
ℓ ) ± err. Meanwhile, while

l 6= j + 1,

H2R(τ−1)(wj, b
τ
j )−H2R(τ−1)(wj, b

τ
ℓ )

≥ 2R ·∆(D) ·XV CG(w1)± err

≥ 2R ·∆(D) ·XV CG(w1)− 8n · T ·
∆(D) ·XV CG(w1)

16nP
≥ R ·∆(D) ·XV CG(w1).

Now we show that all dormant or retired arms are strictly worse by R ·∆(D) ·XV CG(w1) compared

to one of the active arms. Firstly, for all retired arm bℓ in phase τ ,

H2R(τ−1)(wj , bℓ) = 2R ·

(

(τ − a) · (wj − 2wm) +

m
∑

k=1

(wj − wk) ·XV CG(wk)

)

± err

≤ −2R ·∆(D) +H2R(τ−1)(wj, b
τ−1
m )± 2 · err

≤ H2R(τ−1)(wj , b
τ−1
m )− R ·∆(D) ·XV CG(w1).

Secondly, from our calculation of active arms, it is easy to see that H2R(τ−1)(v, b
τ−1
1 ) ≥ R · ∆(D) ·

XV CG(w1), while when an arm bℓ is dormant, H2R(τ−1)(v, bℓ) = 0. This completes our proof.

Lemma 26. (precise statement of Lemma 9 part 2) For all τ > 1, assume in each phase until τ ,

each buyer pulls a none intended arm only α(τ) fraction of rounds, then at the start of phase τ , a

buyer with value wj where j > τ has highest cumulative utility for arm bp = bττ . Specifically, for

all bℓ 6= bττ ,

H2R(τ−1)(wj, b
τ
τ ) > H2R(τ−1)(wj, bℓ) + ∆(D) ·XV CG(w1) · R.

Proof. Let err = 8n · α(τ) · T . Since j > τ , we know that τ is a set up phase and bP = bττ is active.

From the proof for Lemma 25, we know that all dormant and retired arms are strictly worse than

bττ by R ·∆(D) ·XV CG(w1). For any active arm bτℓ 6= bττ , ℓ < τ . Therefore

H2R(τ−1)(wj , b
τ
j )−H2R(τ−1)(wj , b

τ
ℓ )

= 2R ·

(

τ−1
∑

k=1

(wj − wk) ·XV CG(wk)

)

− 2R ·

(

ℓ−1
∑

k=1

(wj − wk) ·XV CG(wk)

)

± err

= 2R ·

(

τ−1
∑

k=ℓ

(wj − wk) ·XV CG(wk)

)

± err ≥ 2R ·∆(D) ·XV CG(w1)± err

≥ R ·∆(D) ·XV CG(w1).

Corollary 27. For all τ ≥ 1, assuming that all other buyers pull their intended arm except for

α(τ − 1) > γ fraction of rounds before phase τ , a mean-based buyer with value wj, where j ≤ τ ,
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pulls arm bτj for the first R rounds, except for at most C1 · α(τ − 1) · R rounds for some constant

C1 that is not dependent on α or τ .

Proof. Firstly, observe that by lemma 25, by the end of phase τ − 1, for any arm bℓ 6= bτj , b
τ−1
j , a

mean-based buyer with value wj will have

H2R(τ−1)(wj, b
τ
j ) > H2R(τ−1)(wj, bℓ) + ∆(D) ·XV CG(w1) ·

T

P
= H2R(τ−1)(wj, bℓ) + Θ(T ) > H2R(τ−1)(wj, bℓ) + γT.

Therefore buyer with value wj will pull the arm bℓ with probability < γ. We conclude that buyer

with value wj may only pull arms bτ−1j = bτj+1 and bτj with constant probability in all R rounds.

Now we claim that buyer with value wm will be pulling arm bτm+1 with probability at most γ

after the beginning x = 20Tn
vm

α(τ − 1) rounds. This is because in each round where wm pulls arm

bτm+1, the buyer’s cumulative utility of arm bτm+1 decreases by at least wm. Meanwhile, if wm pulls

arm bτm, its utility is always positive. Therefore after x rounds,

H2R(τ−1)+x(wm, b
τ
m)−H2R(τ−1)+x(wm, b

τ
m+1) ≥ −16n · α(τ − 1) · T + wm ·

20Tn

wm
α(τ − 1) ≥ γ · T.

Next we prove that given all buyers with value wj+1 will pull arm bℓ 6= bτj+1 with probability

< γ after round t, all buyers with value wj will pull arm bℓ 6= bτj with probability < γ after round

t+ x where x = O(α(τ − 1)T ).

Consider a buyer with value wj participating in a second price auction. Note that the only

difference between bidding wj and wj+1 is: 1) bidding wj+1 can win the item with higher probability

when second price is wj , but the utility gain for both strategies is 0; and 2) bidding wj+1 can win

the item with positive probability when second price is wj+1, in this case the buyer will incur

negative utility. Since all buyers bid bτj+1 when their value is wj+1 with high probability, second

price is wj+1 with a constant probability ≥ (1 − nγ)(qj+1)
(n−1) in each round (we view everything

related to D as a constant). We conclude that in any round t′ > t, for buyer i, expected utility

difference between arm bτj and bτj+1 in each round E[ri,bτj ,t′(wj)− ri,bτj+1
,t′(wj)] is lower bounded by

some constant ∆(r(wj)) not dependent on t.

Now notice that in the first R rounds of phase τ essentially runs a second price auction in each

round, where pulling arm bτj will always give weakly better utility compared to pulling any other

arm. Also, by our assumption, all other buyers will bid their intended arm w.p. > 1 −mnγ after

round t. Let x = 20Tn
∆(r(wj))

α(τ − 1), then

H2R(τ−1)+x(wj, b
τ
j )−H2R(τ−1)+x(wj, b

τ
j+1)

≥ −16n · α(τ − 1) · T +∆(r(wj))x

≥ −16n · α(τ − 1) · T +∆(r(wj))
20Tn

∆(r(wj))
α(τ − 1) ≥ γ · T.

Therefore after round t+ x, buyer with value wj will pull all arms bℓ, including bτj , with probability

< γ. Finally we conclude that after C ′α(τ − 1)R = m · 20Tn
∆(r(wj))

α(τ − 1) rounds, all buyers will pull

any unintended arm with probability < γ. Hence during the first R rounds in phase τ , a buyer can

pull an unintended arm in only C1α(τ − 1)R = C ′α(τ − 1)R + γR rounds.
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Lemma 28. For all τ > 1, assuming that all other buyers pull their intended arm except for

α(τ − 1) > γ fraction of rounds before phase τ , a mean-based buyer with value wj, where j > τ ,

pulls arm bp = bττ for the first R rounds, except for at most γR rounds.

Proof. By lemma 26, by the end of phase τ −1, for any arm bℓ 6= bττ , a mean-based buyer with value

wj will have

H2R(τ−1)(wj, b
τ
τ ) > H2R(τ−1)(wj, bℓ) + ∆(D) ·XV CG(w1) ·

T

P
= H2R(τ−1)(wj, bℓ) + Θ(T ) > H2R(τ−1)(wj, bℓ) + γT.

Therefore at the start of phase τ , buyer with value wj will pull the arm bℓ with probability < γ.

During the first R rounds of phase τ , pulling arm bττ remains a weakly dominating strategy in each

round, thus wj will continue to pull arm bℓ with probability < γ.

Corollary 29. (precise statement of Corollary 10) For all τ , assuming that all other buyers pull

their intended arm except for α(τ − 1) > γ fraction of rounds before phase τ , a mean-based buyer

with value wj pulls arm bτj (if it exists, otherwise they pull arm bP = bττ ) for the first R rounds,

except for at most C1 · α(τ − 1) ·R rounds for some constant C1 that is not dependent on α or τ .

Proof. By Lemma 27 and 28.

Lemma 30. (precise statement of Lemma 11) For all phase τ > 1, assuming that all other buyers

pull their intended arm except for α(τ − 1) fraction of rounds before phase τ , a mean-based buyer

with value wj pulls arm bτj (if it exists, otherwise they pull arm bP ) for the last R rounds, except

for at most C · α(τ − 1) · R rounds for some constant C2 that is not dependent on α or τ .

Proof. To prove this, we simply observe that Corollary 29 establishes that all buyers pull an intended

arm with probability > 1 −mnγ after first adj(τ) = C ′α(τ − 1)R rounds in the phase. Let bτa be

the intended arm for buyer with value wj, then a = min(τ, j). It is easy to see that because the

errors terms are fully adjusted by the first adj(τ) rounds of auctions,

H2R(τ−1)+adj(τ)(wj , b
τ
a)−H2R(τ−1)+adj(τ)(wj, b

τ
ℓ )

≥

(

1[ℓ < a] ·

j−1
∑

k=ℓ

(wj − wk) ·XV CG(wk) + 1[ℓ > a]
ℓ−1
∑

k=a

(wk − wj)XV CG(wk)

)

.

We define

∆(r(wj), r(wℓ)) = wj ·XV CG(wj)− PV CG(wj)− wjXV CG(wℓ) + PV CG(wℓ).

Assume this phenomenon that that all buyers pull an intended arm with probability > 1 − mnγ

last until round R + x, then for any x where x <
(

1− 8Pnγ
∆(r(wj),r(wℓ))

)

R− adj(τ) and active arm bτℓ ,

H2R(τ−1)+R+x(wa, b
τ
a)−H2R(τ−1)+R+x(wa, b

τ
ℓ )

≥ 2R ·

(

1[ℓ ≤ j] ·

a−1
∑

k=ℓ

(wa − wk) ·XV CG(wk) + 1[ℓ > j]

ℓ−1
∑

k=j

(wk − wa)XV CG(wk)

)

+ (1−mnγ) · (R− adj(τ)) (wa ·XV CG(wa)− PV CG(wa)− waXV CG(wℓ) + PV CG(wℓ))
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(utility difference in first R rounds when all buyers bid as intended)

+ (1−mnγ) · x · (wa ·XV CG(wa)− 2waXV CG(wa) + PV CG(wa))

− (1−mnγ) · x · (wa ·XV CG(wℓ)− 2wℓXV CG(wℓ) + PV CG(wℓ))

(utility difference in last x rounds when all buyers bid as intended)

−mnγx · 4 (rounds when buyers do not bid as intended)

≥ 2R ·

(

1[ℓ < j] ·

a−1
∑

k=ℓ

(wa − wk) ·XV CG(wk) + 1[ℓ > j]

ℓ−1
∑

k=j

(wk − wa)XV CG(wk)

)

− (1−mnγ) · x · 2(wa − wℓ) ·XV CG(wℓ)

+ (R− adj(τ)− x) ·∆(r(wa), r(wℓ))−mnγx · 4

≥ 2R ·

(

1[ℓ < j] ·

a−1
∑

k=ℓ+1

(wa − wk) ·XV CG(wk) + 1[ℓ > j]

ℓ
∑

k=j

(wk − wa)XV CG(wk)

)

(Note that this term is non negative)

+ (R− adj(τ)− x) ·∆(r(wa), r(wℓ))−mnγx · 4

≥ (R− adj(τ)− x) ·∆(r(wa), r(wℓ))− 4mnxγ ≥ γT.

This is consistent with bτa being strictly the favourite arm of buyer with value wj. We conclude that

a buyer with value wj will pull their intended arm aside from adj(τ)+ 8Pnγ
∆(r(wj),r(wℓ))

R = C2 ·α(τ −1)

rounds for some constant C2.

Proof of Proposition 12. Let us define α(1) = 2γ and α(τ) = (C1 + C2) · α(τ − 1) for τ > 1. It

is easy to see that α(τ) is increasing. Firstly, in phase 1 there is only one arm that is active and

everyone will try to pull that arm aside from 2γR rounds. Next, assume for each phase i ≤ τ − 1

each buyer pull their intended arm aside from α(i)R rounds. Then since α is increasing, on average

each buyer pull their intended arm in each round aside from α(τ −1)τR rounds by the end of phase

τ − 1. By corollary 29 and lemma 30, each buyer will pull their intended arm aside from at most

C1α(τ − 1)R + C2α(τ − 1)R = α(τ)R rounds. Finally, we verify that α(τ) = o(1) for all τ . Note

that there are in total only constant (P ) number of phases, therefore α(τ) = (C1 + C2)
τ−1α(1) ≤

(C1 + C2)
P · 2γ = o(1). This completes our proof.

C Omitted Proofs from Section 4

Theorem 31. (restatement of Theorem 16) There exist (x, y, u) that satisfy the n-buyer BMSW

Constraints but are not n-buyer auction feasible, and (x, u) that satisfy the Reduced n-buyer BMSW

Constraints but are not n-buyer auction feasible.

Proof. Let distribution D be such that the support w = [1/M, 4/M, 5/M, 10/M ] for some large

number M and q = [5δ, δ, δ, 1− 7δ] for some δ < 1/7. Let x∗ be the border extreme point x∗ = Wq,

where

W =









0.5 0 0 0

1 0.5 0 0

1 1 0.5 0

1 1 1 0.5









.
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Let u∗(x∗) be such that for all i,

u∗i = min
j≤i

(wi − wj)xj .

By construction (x∗, u∗(x∗)) satisfy the Reduced n-buyer BMSW Constraints. We can explicitly

calculate x∗ to be x∗ = [1− 7δ/2, 13δ/2, 11δ/2, 5δ/2]. One can verify that x∗ satisfy

10δ · 1/M = 5δ/2 · 4/M = x∗1(w3 − w1) > x∗2(w3 − w2) = 11δ/2 · 1/M = 5.5δ · 1/M,

33δ · 1/M = 11δ/2 · 6/M = x∗2(w4 − w2) > x∗1(w4 − w1) = 5δ/2 · 9/M = 22.5δ · 1/M,

33δ · 1/M = 11δ/2 · 6/M = x∗2(w4 − w2) > x∗3(w4 − w3) = 13δ/2 · 5/M = 32.5δ · 1/M.

Thus by Claim 32, (x∗, u∗(x∗)) is not n-buyer auction feasible. Note that (x∗, x∗, u∗(x∗)) also serves

as an example that is a feasible solution to the n-buyer BMSW Constraints but not n-buyer auction

feasible.

Claim 32. Given distribution D, if a border extreme point x∗ satisfy

x∗1(w3 − w1) > x∗2(w3 − w2),

x∗2(w4 − w2) > x∗1(w4 − w1),

x∗2(w4 − w2) > x∗3(w4 − w3)

and for all i, u∗i = minj≤i (wi−wj)xj, then (x∗, u∗) is not n-buyer auction feasible for distribution

D.

Proof. Assume (x∗, u∗) is n-buyer auction feasible, and let A the be the repeated auction where

when the buyers are running clever γ-mean based algorithms,

XA
ij (D, S1, . . . , Sn) = x∗j ±O(γ);UA

ij (D, S1, . . . , Sn) = u∗j ± O(γ).

Therefore when the buyers are running clever 0-mean based algorithms, the average allocation

probability and utility for buyer with value wj in A is exactly x∗j and u∗j .

Because x∗ is an extreme point of the border polytope, x∗ cannot be written as a convex

combination of ≥ 2 distinct points that also satisfy the Border constraints. Since x∗ is a convex

combination of the allocation probabilities in each fixed round, all the allocations during each round

must be x∗ itself. This means that any auction which matches (x∗, u∗) must have buyers with value

wj receive the item with probability xj in every single round (except for o(T )).

Suppose that at the end of auction A, the buyer with value w3 is pulling an arm a with label

≥ w2. Then because w3 buyer’s favorite arm is a at the end, the w3 buyer gets utility u∗3 on average

(across rounds of auctions) by pulling arm a always. Furthermore, arm a’s average allocation is

at least x∗2 (because buyer with value w2 gets the item with probability x∗2 every round by pulling

arms ≤ w2, and the allocation probability is monotone in value in each round). Thus, buyer with

value w4 can get utility x∗2(w4 − w3) + u∗3 by pulling arm a the whole way through. Then we reach

a contradiction:

u∗4 ≥ x∗2(w4 − w3) + u∗3

≥ x∗2(w4 − w3) + x∗1(w3 − w1)
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> x∗2(w4 − w3) + x∗2(w3 − w2)

≥ x∗2(w4 − w2) = u∗4.

Suppose instead that buyer with value w3 at the end has strictly higher utility for an arm a

labeled w1 ≤ a < w2 than for any arm outside of this region. Then the w3 buyer must be pulling

arm a for a non-empty period at the end of the auction. Thus, in a non-empty set of rounds,

arm a grants allocation x∗3. During those rounds, arm w2 must also grant allocation ≥ x∗3 (by

monotonicity). Then because arm w2 must grant at least x∗2 every round, it grants > x∗2 allocation

on average throughout the auction, while charging at most w2. This means that buyer with value w4

can get average utility strictly greater than x∗2(w4−w2) by pulling arm w2 every round, contradicting

u∗4 = x∗2(w4 − w2).

Finally, suppose the w3 buyer has the highest utility at the end for an arm a labeled < w1 (not

necessarily strictly higher than any arm outside of this region). Then arm a must give the item

with positive probability on average. Since a is labeled < w1, arm a always charges less than w1.

This means that u∗1 > 0, contradicting u∗1 = minj≤1(w1 − wj)xj = 0.

D Omitted Proofs from Section 4.2

Note that the notion of optimal is with regard to 0-regret buyers, therefore we will assume the

buyers are 0-regret throughout the proofs in this section.

Theorem 33. (restatement of Theorem 21) The optimal pay-your-bid uniform auction with declin-

ing reserve can be found by a linear program of size Poly(m). However, there exist 2-buyer instances

where the optimal 2-buyer feasible auction strictly outperforms the best pay-your-bid uniform auction

with declining reserve.

Proof. By Claim 34 and Claim 35.

Claim 34. The optimal pay-your-bid uniform auction with declining reserve can be found by a

linear program of size Poly(m).

Proof. In uniform auction with declining reserve, every buyer above the reserve has an equal chance

of winning the item (and paying their bid) in each round. Let us define variables l1, . . . , lm, where

li denotes the fraction of rounds in which bidding wi would win the item with positive probability

(i.e. the fraction of rounds in which wi is above the reserve). Let l0 = 0. For monotonicity, li ≤ li+1

∀i, for the l1, ...lm representing disjoint segment of auctions,
∑

i(li − li−1) ≤ 1.

Assume there are in total T rounds of auctions. Then for the first (1− li)T rounds, bidding wi

would win the item with probability 0. Let Hn−1
j be the random variable representing the number

of buyers with type ≥ wj among the n− 1 other buyers in the auction 13. Then during the interval

((1 − li)T, (1 − li−1)T ), a buyer with type wj ≥ wi gets the item each round with probability

E

[

1
1+Hn−1

i

]

. Therefore for any clever buyer strategies S1, ...Sn and for buyer i,

XA
ij (D, S1, . . . , Sn) =

j
∑

i=1

(li − li−1)E

[

1

1 +Hn−1
i

]

.

13Hn−1

j can be thought of as a binomially distributed random variable with parameters n− 1, p = 1− FD(wj).
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By setting λi = li − li−1, we can rewrite the relationship between X and λ as

XA
ij (D, S1, . . . , Sn) =

j
∑

i=1

λi E

[

1

1 +Hn−1
i

]

, subject to λi ≥ 0,
∑

i

λi ≤ 1.

Observe that E
[

1
1+Hn−1

i

]

actually can be calculated solely based on D. Specifically, let Qi =
∑m

k=i qi

be the probability that a buyer has value ≥ wi, then

E

[

1

1 +Hn−1
i

]

=

n−1
∑

j=0

1

1 + j
·

(

n− 1

j

)

·Qj
i · (1−Qi)

n−1−j .

Denote the value of E
[

1
1+Hn−1

k

]

as Ek. We observe that

XA
ij (D, S1, . . . , Sn)−XA

i(j−1)(D, S1, . . . , Sn) = λjEj,

let variable xj represent the value of XA
ij (D, S1, . . . , Sn) where S1, ...Sn have 0-regret for any buyer

i, then λj =
xj−xj−1

Ej
(we define x0 = 0 here). The constraint

∑m
k=1 λk ≤ 1 can now be written as

∑m
k=1

xj−xj−1

Ej
≤ 1, which is equivalent to

m
∑

j=1

xj(
1

Ej
−

1

Ej+1
) ≤ 1,

where we define 1/Ej+1 = 0. We conclude that solutions λ from the following linear program

correspond to the optimal pay-your-bid uniform auction with declining reserve.

maximize~x,~u

m
∑

i=1

qi(wixi − ui) (Reduced Uniform LP)

subject to

m
∑

j=1

xj(
1

Ej
−

1

Ej+1
) ≤ 1

ui ≥ (wi − wj) · xj , ∀i, j ∈ [m] : i > j

~x is monotone

~x, ~u ≥ 0.

Claim 35. There exist 2-buyer instances where the optimal 2-buyer feasible auction strictly outper-

forms the best pay-your-bid uniform auction with declining reserve.

Proof. Consider the following example with 2 buyers with value distribution D where

w =

[

1

4
,
2

4
,
3

4
, 1

]

, q =

[

1

4
,
1

4
,
1

4
,
1

4

]

.
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One can verify that the optimal solution to Reduced Uniform LP for the example is x1 = x2 =

0, x3 = x4 = 3
4
, where the attained revenue is 9/16. This solution corresponds to running uniform

auction with fixed reserve at 3/4 in each round. However, simply running second price auction with

fixed reserve at 3/4 in each rounds results in an increase in expected revenue. To see this, let us

compare the revenue from both auction formats for each fixed pair of buyer values. We observe

that in no case could second price generate worse revenue than uniform price auction, given that

they have the same reserve. Moreover, when both buyers have value 1, second price auction attains

revenue 1 while uniform auction only attains revenue 3
4
. Hence we conclude that pay-your-bid

uniform auction with declining reserve is not the optimal auction format.

E Omitted Proofs from Section 4.3

Theorem 36 (restatement of Theorem 22). Let P denote the set of all tuples (x, y, u) that are n-

buyer feasible auctions where the bid space is equal to the support of D. Then P is not necessarily

convex, even when n = 2.

Proof. Consider n = 2 (there are 2 buyers) and distribution D satisfying w = [1, 3, 4, 7, 30] and

q = [1/5, 1/5, 1/5, 1/5, 1/5]. Let

xa =













9/10

7/10

3/10

3/10

3/10













, ya =













9/10

9/10

9/10

7/10

3/10













; xb =













9/10

7/10

3/10

3/10

3/10













, yb =













9/10

9/10

7/10

3/10

3/10













.

We show that (xa, ya), (xb, yb) are both n-buyer auction feasible. However, (x
a+xb

2
, ya+yb

2
) is not n-

buyer auction feasible. Let Aa be the auction where a γ-mean buyer gets the item with probability

yai +O(γ) by bidding wi in each round. Firstly, consider auction Aa.

(w5 − w4) · y
a
4 = 23 · 9/10 = 20.7

(w5 − w3) · y
a
3 = 26 ·

9

10
= 23.4

(w5 − w2) · y
a
2 = 27 ·

7

10
= 18.9

(w5 − w1) · y
a
1 = 29 ·

3

10
= 8.7

⇒ xa
5 =

9

10
.

(w4 − w3) · y
a
3 = 3 ·

9

10
= 2.7

(w4 − w2) · y
a
2 = 4 ·

7

10
= 2.8

(w4 − w1) · y
a
1 = 6 ·

3

10
= 1.8

⇒ xa
4 =

7

10
.
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(w3 − w2) · y
a
2 = 1 ·

7

10
= 0.7

(w3 − w1) · y
a
1 = 3 ·

3

10
= 0.9

⇒ xa
3 =

3

10
.

By the utility analysis above, arm w3, w2, w1, w1, w1 are the favourite arms of γ-mean buyer with

value w5, w4, w3, w2, w1 respectively (and will be pulled almost always). Since in each round the

arm’s probability of allocation is the same, we can verify that wi will indeed get the item with

probability xa
i + o(γ) if the buyers are running γ-mean based algorithms. The last thing we need

to do is to verify that ya is feasible: that it is possible to give items with the probabilities specified

by ya. We know that a buyer is bidding w3, w2, w1 with probability 1/5, 1/5, 3/5 respectively, ya is

a feasible interim allocation by border’s constraint.

Similarly, let Ab be the auction where buyer gets item with probability ybi by bidding wi in each

round.

(w5 − w4) · y
b
4 = 23 ·

9

10
= 20.7

(w5 − w3) · y
b
3 = 26 ·

7

10
= 18.2

(w5 − w2) · y
b
2 = 27 ·

3

10
= 8.1

(w5 − w1) · y
b
1 = 29 ·

3

10
= 8.7

⇒ xb
5 =

9

10

(w4 − w3) · y
b
3 = 3 ·

7

10
= 2.1

(w4 − w2) · y
b
2 = 4 ·

3

10
= 1.2

(w4 − w1) · y
b
1 = 6 ·

3

10
= 1.8

⇒ xb
4 =

7

10

(w3 − w2) · y
b
2 = 1 ·

3

10
= 0.3

(w3 − w1) · y
b
1 = 3 ·

3

10
= 0.9

⇒ xb
3 =

3

10

We can see that inAb, arm w4, w3, w1, w1, w1 are the favourite arms of buyer with value w5, w4, w3, w2, w1

respectively, which is consistent with xb. Lastly, We know that a buyer is bidding w4, w1 with prob-

ability 1/5, 4/5 respectively, thus yb is a feasible interim allocation by border’s constraint.
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Now let

x =
xa + xb

2
=













9/10

7/10

3/10

3/10

3/10













, y =
ya + yb

2
=













9/10

9/10

8/10

5/10

3/10













.

Assume for contradiction that (x, y) is n-buyer auction feasible, then there exists an auction A

where given clever 0-mean buyer strategies S1, . . . , Sn, for all i, j, XA
ij (D, S1, . . . , Sn) = xj and

Y A
ij (D, S1, . . . , Sn) = yj. we first find the preferred arms of buyer with value wi at the end of the

auction.

(w5 − w4) · y4 = 23 ·
9

10
= 20.7

(w5 −w3) · y3 = 26 ·
8

10
= 20.8

(w5 − w2) · y2 = 27 ·
5

10
= 13.5

(w5 − w1) · y1 = 29 ·
3

10
= 8.7

(w4 −w3) · y
b

3
= 3 ·

8

10
= 2.4

(w4 − w2) · y
b
2 = 4 ·

5

10
= 2

(w4 − w1) · y
b
1 = 6 ·

3

10
= 1.8

Thus towards the end of the auction, w3 is the preferred arm by buyer with value w5 and w4. By

Claim 37 (with n = 2, S = {w5, w4}), arm w3 cannot allocate the item with probability larger than
1
2
(1− (1 − 2/5)2)/(2/5) = 4

5
towards the end of the auction. However by the same Claim 37 (with

n = 2, S = {w5}), we know that any arm preferred by buyer with value w5 cannot give the item

with probability larger than 1
2
(1− (1− 1/5)2)/(1/5) = 9

10
in any round. Since buyers are supposed

to receive the item with probability x5 = 9
10

on average when their value is w5, in each round of

auction w5-buyer must get the item with probability exactly 9
10
, which contradicts the fact that w5

gets item with probability ≤ 4
5
towards the end of the repeated auction.

Claim 37. Let S be a subset of D’s support. Let q(S) =
∑

v∈S q(v) and let b(S) be some fixed value.

Let A be a one round auction with n symmetric buyers and 1 item where buyers are constrained to

bid exactly b(S) when their value v is in S. Then given that a buyer i draws a value v ∈ S, they

cannot receive the item with probability larger than 1
nq(S)

(1− (1− q(S))n).

Proof. Let event A be that buyer i gets the item; event B be that buyer i has value v ∈ S; event

C be that some buyer has value v ∈ S. Then the probability we want is Pr[A|B]. Since event B
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implies event C,

Pr[A|B] = Pr[A|B,C] =
Pr[A,B|C]

Pr[B|C]
≤

Pr[A|C]

Pr[B|C]
.

We know that Pr[A|C] = 1
n
, since information from event C is symmetric to all buyers. We can

directly calculate

Pr[B|C] =
Pr[B,C]

Pr[C]
=

Pr[B]

Pr[C]
= q(S)/(1− (1− q(S))n).

We conclude that Pr[A|B] = 1
n
· (1− (1− q(S))n)/q(S).

F Additional Discussion on n-buyer BMSW Constraints

In this section we will give a more in depth analysis of the linear programs that maximizes revenue

(i.e. welfare - utility) given BMSW constraints and n-buyer BMSW constraints. The linear programs

(we call them Single LP and Border LP) are presented below again for readers’ convenience. We

will call the optimal solution to the linear programs SLPRev(D) and BLPRev(D) respectively.

Maximize

m
∑

i=1

qi · (vi · xi − ui) (Single LP)

Subject to ui ≥ (vi − vj) · xj ∀vj < vi,

ui ≥ 0 ∀ui,

0 ≤ xi ≤ 1 ∀xi,

~x is monotone increasing.

Maximize

m
∑

i=1

qi · (vi · xi − ui) (Border LP)

Subject to ui ≥ (vi − vj) · xj ∀vj < vi,

ui ≥ 0 ∀ui,

~x satisfies Border’s constraints for n buyers,

~x is monotone increasing.

Firstly, We derive the Lagrangian relaxation of Single LP and Border LP. We provide three

properties that uniquely determines an optimal solution to the Lagrangian relaxation in the sin-

gle buyer setting. This perspective gives us additional intuition to the proof of theorem 3.5 in

[BMSW18] (which establishes that for D supported on [1, H ], both maxD (Val(D)/SLPRev(D))

and maxD (SLPRev(D)/Mye(D)) tend to infinity as H tend to infinity).

Secondly, we attempt to generalize the three properties to the multiple buyer setting. While two

of the properties still hold, we show that the third property no longer hold for Border LP induced

by all distributions D. We present a restricted class of distributions where the third property does

hold. In this case, the three properties would uniquely determine the optimal solution to Border
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LP as well.

F.1 Lagrangian Formulation

We start by constructing the following lagrangian relaxation of Single LP, which we call LRSingle.

minλ maxx

m
∑

i=1

qi(vixi − ui)dv +
m
∑

i=1

i
∑

j=1

(

ui − (vi − vj)xj

)

· λij (LRSingle)

subject to ui ≥ 0 ∀ i ∈ [m],

0 ≤ xi ≤ 1 ∀i ∈ [m],

~x monotone.

By a) consolidating the ui and xi terms, b) rescaling the lagrangian multipliers by λij :=
λij

qi
, and

c) observing that optimal λ must result in the multiplier of ui being zero, we arrive at the following

equivalent optimization problem:

minλ maxx

m
∑

i=1

(

qivi −

m
∑

k=i

qk(vk − vi)λki

)

· xi (LRSingle)

subject to ui ≥ 0 ∀ i ∈ [m],

0 ≤ xi ≤ 1 ∀i ∈ [m],

~x monotone,

i
∑

j=1

λij = 1 ∀i ∈ [m].

We make one last reformulation so that our objective can be viewed as the virtual welfare of the

buyers. From now on, when we refer to the optimization problem LRSingle, we will be referring to

this final reformulation.

minλ maxx

m
∑

i=1

qi · φ(i, λ) · xi (LRSingle)

subject to ui ≥ 0 ∀ i ∈ [m],

0 ≤ xi ≤ 1 ∀i ∈ [m],

~x monotone,

i
∑

j=1

λij = 1 ∀i ∈ [m],

φ(i, λ) = vi −

m
∑

k=i

qk
qi
(vk − vi)λki ∀i ∈ [m].

Finally, we observe that the process of create the lagrangian relaxation for Border LP is identical

to that for Single LP. Let us call the resulting optimization problem LRBorder. We note that

the only difference between LRSingle and LRBorder is that ~x must satisfy border constraints in
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LRBorder.

F.2 Three Properties of the Lagrangian Variable

Let us first see a useful property of the virtual value φ: that there always exists an optimal λ such

that φ(i, λ) is monotone in i. We use φi to denote φ(i, λ) when the λ in question is clear.

Theorem 38. For every optimal λ, φi ≤ φj when i < j.

Proof Sketch. We can view the lagrangian relaxation as a two player game where the first

player sets the λ that minimizes the objective, and the other sets the ~x that maximizes the objective

given the λ the first player sets. Consider when the second player gets a λ where φi > φj for

some i < j, it would want to set xi to be as large as possible and xj to be as little as possible.

Unfortunately ~x has to be monotone. In this case the best course of action would be to set xi = xj .

Now, consider the actions of the first player, the first player knows that the second player will set

xi = xj as long as they set φi > φj. Now they observe that for any λkj > 0, one unit of λkj lowers

the objective by qk(vk − vj)xj , and we know that one unit of λki lowers the objective more because

qk(vk − vi)xi ≥ qk(vk − vi)xj . As long as φi > φj, the second player can just decrease λkj (which

increases φj) and increase λki (which decreases φi) to make the objective even smaller. As a result,

the second player decides it’s not a good idea to make φi > φj . A full proof of theorem 38 can be

found in section F.4.

Now we are ready to discuss the following three properties that in combination determines a

unique and optimal λ for LRSingle.

Property 39. φ(i, λ) ≥ 0 for all i.

Property 40. Let g(i, λ) = {j|λij > 0}. Then min g(i, λ) ≥ max g(i− 1, λ) for all i. Equivalently,

there are no i < j < k < l such that λli > 0 and λkj > 0.

Property 41. λki = 0 for all k, i such that ∃j < i where qj · φ(j, λ) > 0.

Lemma 42. There exists an optimal λ such that 39 is true.

Lemma 43. There exists an optimal λ such that Property 40 is true.

Lemma 44. Every optimal λ satisfies 41.

Theorem 45. The λ that satisfies properties 39,40,41 exists.

Proof sketch.

1. There exists an optimal λ that satisfies property 39. Consider the same analog with two

players setting λ and ~x. Assume player one is setting an optimal λ where φi < 0 for some i.

Then by theorem 38, φj < 0 for all j < i. Now consider player two who knows that the virtual

values φ1 to φi are all negative. The best strategy should be to set x1 to xi to be 0. Knowing

the strategies of player two, player one can decrease λki by ǫ without increasing the objective

at all. Hence eventually player one can arrive at another optimal λ where φ(i, λ) ≥ 0 for all i.
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2. There exists an optimal λ that satisfies property 39 and 40. Consider an optimal λ that satisfies

property 39 but for some i < j < k < l where λli > 0 and λkj > 0. Now consider decreasing

λli by δ and increasing λlj by delta. Next, increase λki and decrease λkj by an amount δ′

so that φi is the same as before any change. One can verify that φj has decreased after the

change while no other φ has changed, which means the λ after change is also optimal. If this

λ violates property 39, we can simply decrease λlj and increase λll until φj is non negative.

3. Every optimal λ satisfies property 41. Consider player one setting an optimal λ where λki > 0

for some k, i where ∃j < i such that qj · φ(j, λ) > 0. By theorem 38, all φl where l ≥ j will be

possible, and therefore player two should set xl = 1 for all l ≥ j. Now, player two’s strategy,

player one can simply decrease λki and increase λkj by the same amount in order to lower the

objective, which contradicts with λ being optimal.

Theorem 46. The λ that satisfies properties 39,40,41 is unique.

Proof Sketch. Consider what properties 39,40,41 is saying. Let us say “k is lowering index i”

when λki > 0. Property 40 says that larger k has to lower larger i. Property 39 and 41 basically says

that if i is the smallest number where φi > 0, then φj = 0 for all j < i. Moreover, all k ∈ [m] has to

be lowering some j ≤ i. This essentially means that if one knows the distribution of λ1, λ2...λk−1,

there is only one way to set λk: lower the smallest i where φi > 0. if φi becomes 0, then lower i+1

next, etc. Hence one can expect the λ that satisfies the three properties to be exactly determined

by the following algorithm.

Algorithm 1: FillLowToHigh():

∀k ≥ i, λki ← 0
for k = 1, 2, ... m do

λ(k)← 1
while λ(k) > 0 do

i← argminj{φ(j, λ) > 0}
λ(fill)← the value that if assigned to λki will make φ(i, λ) = 0
λki ← min

(

λ(k), λ(fill)
)

λ(k)← λ(k)− λki

end while

end for

return λ

The formal proofs of theorem 45 and 46 can be found at section F.4.

The existence of such a unique optimal λ makes it much easier for us to understand the optimal

solution to LP Single, and can lead to additional intuition. For instance, consider the following

theorem in [BMSW18].

Theorem 47 ([BMSW18]). Let distribution D∗ be the equal revenue curve truncated at H (D∗ is

supported on [1, H ]), which means that the cumulative distribution function of D∗ is

F (v) = 1− 1/v ∀v ∈ [1, H); F (H) = 1.

Then SLPRev(D∗) = Θ(log logH), while Valn(D
∗) = Θ(logH).
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[BMSW18] proves that SLPRev(D∗) = Θ(log logH) by first setting specific ~x and finding the

corresponding objective value to prove SLPRev(D∗) ≥ log(logH+1)−1, then proving a log(logH+

1) upper bound on SLPRev. By using the three properties of the optimal λ and associated φ(i, λ),

we can actually prove that this upper bound is tight.

(alternate proof of Theorem 47 [BMSW18]). Let (x∗, u∗) be the optimal solution to Single LPgiven

distribution D.

In the discrete support setting we know there is a unique optimal λ = λ∗ that satisfies prop-

erty 39, 40 and 41. Since φ(i, λ) is none negative and monotonely increases in i, setting xi = 1 for

all i maximizes the objective. Therefore

min
λ

max
x

m
∑

i=1

qiφ(i, λ)xi = max
x

m
∑

i=1

qiφ(i, λ
∗)xi =

m
∑

i=1

qiφ(i, λ
∗).

Let w(vi) be the largest value vj where λ
∗
ji > 0, by property 40 we know w(vi) is monotone increasing

in i. Let g(vi) be the set of values vj where λ∗ij > 0. By complementary slackness of (x∗, u∗) and

λ∗, it is equivalent to define g(vi) as the set of value vj where ui = (vi − vj)x
∗
j . By property 41,

φ(i, λ∗) = 0, ∀i < max(g(vm)). Then it must be the case that for all index l < max(g(vm)),

l
∑

i=1

qiφ(i, λ
∗) = 0

⇒

l
∑

i=1

(

qivi −

m
∑

k=i

qk(vk − vi)λki

)

= 0

⇒
l
∑

i=1

qivi =
l
∑

i=1

m
∑

k=i

qk(vk − vi)λki =

w(l)
∑

k=1

∑

i∈g(vk)

qk(vk − vi)λki. (1)

Now consider D∗ǫ : a discretization of (D∗) where the support is {1, 1+ ǫ...H} and F (v) = 1− 1
v
for

all v in the support. max(g(v))− min(g(v)) can be made arbitrarily small for all v by sufficiently

small ǫ, in other words, limǫ→0max(g(v))−min(g(v)) = 0. Also notice that for any δ, there exists

an ǫ where g(v) 6= g(v + δ) by φ monotonicity. Thus for D = limǫ→0D
∗
ǫ , g(v) just contains a point

and g(v) 6= g(w) for all v 6= w, which means that g can be viewed as a strictly increasing function

and w can be viewed as g−1. Thus in the continuous setting the analogous equation to equation 1

would be

∀k ∈ supp(D) :

∫ k

i

f(v)(v − g(v)) dv =

∫ g(k)

1

f(v)v dv

⇒

∫ k

1

f(v)(v − g(v)) dv =

∫ k

1

f(g(v))g(v)g′(v)dv

⇒

∫ k

1

f(v)(v − g(v))− f(g(v))g(v)g′(v) dv = 0.
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Therefore f(v)(v − g(v))− f(g(v))g(v)g′(v) = 0. Given the equal revenue curve, f(v) = 1
v2
. Thus

1

v2
(v − g(v))−

1

g(v)2
g(v)g′(v) = 0

⇒ 1/v − g(v)/v2 −
g′(v)

g(v)
= 0.

As calculated in [BMSW18], the solution to above equation is g(v) = v
log v+1

. Therefore g(H) =
H

logH+1
, and

SLPRev =

∫ H

g(H)

f(v)φ(v, λ∗) =

∫ H

g(H)

f(v)v dv =

∫ H

H/(logH+1)

1

v2
· v dv = log(logH + 1).

F.3 Extension to Multiple buyers

Using the same proof logic as for the single buyer case, it is easy to see that theorem 38 still holds

and there is an optimal lambda which satisfies property 39 and 40. However, it is possible that

no optimal λ satisfies property 41 due to the additional restriction that x must satisfy Border’s

constraints, which makes our understanding of the solution to Border LP much more difficult. We

can see this from the following example.

Remark 48. There exists an optimal λ for some distribution D where λki > 0 for some k, i such

that ∃j < i where xj has a positive multiplier.

Proof. We provide an example for which this statement is true. Consider the following distribution:

q =

[

1

4
,
1

4
,
1

4
,
1

4

]

, v = [1, 9, 10, 15]

Then in order for Property 41 to hold, it must be true that φ1 ≤ 0, φ3 = v3 and φ4 = v4 because no

λ has the result of φ2 = 0. Then every λ which satisfies 41 has the same objective value. One such

λ which satisfies 41 is: λ11 = 1, λ21 = 1
8
, λ22 = 7

8
, λ32 = 1, and λ42 = 1. The resulting φ is strictly

increasing, so the optimal x∗ is for Border’s constraint to be tight. Thus, x∗ = [1
8
, 3
8
, 5
8
, 7
8
]. Now

consider an alternate λ′ such that λ11 = 1, λ21 = 1, λ32 =
3
11
, and λ42 =

8
11
. Then the resulting φ′ is

also strictly increasing, so the optimal x∗ is the same as for λ. The difference in objective between

λ and λ′ is:

λ− λ′ =
1

4
(15− 9)(1)

7

8
−

1

4
(15− 9)

(

3

11

)

7

8
−

1

4
(15− 10)

(

8

11

)

7

8
> 0.

Because λ′ yields a better objective, we know λ must not be optimal and so the optimal λ∗ for this

distribution must not satisfy Property 41.

A natural question following this discovery is: under what conditions could we generalize the

results for single buyer setting to multiple buyer setting? Here we prove that for a restricted class

of distribution D which satisfy f(v)
F (v)
≤ 1

H−v
for all v, theorem 45 and 46 are generalizable.
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Theorem 49. If the distribution satisfies f(v)
F (v)

≤ 1
H−v

for all v where H is the maximum value

possible, then there is a unique optimal λ for the multi-buyer LP which satisfies Properties 39, 40,

and 41.

Proof. If (vk − vj)xj ≥ (vk − vi)xi for all i ≥ j and k ≥ i, then we can extend Lemma 44 to the

multi-buyer case because we will have normalized for x. Lemmas 42 and 43 were already extendable,

so all three lemmas hold true for the multi-buyer case under a distribution of the specified type

and we can also apply the logic in Theorem 46. Note that for any λ which induces a monotone

φ and satisfies Property 42, it is optimal for Border’s constraints to be tight because it is optimal

to maximize xi for every i. For any minmax problem (minλ maxx f(λ, x)), if x
∗ is optimal for the

inner maximization for all λ, then the problem is equivalent to minλ f(λ, x
∗). In our problem, we

know that xj = F (vj) when Border’s constraints are tight. Therefore x∗j = F (vj). We want:

(vk − vj)xj ≥ (vk − vi)xi =⇒
F (vj)

F (vi)
≥

vk − vi
vk − vj

.

Notice that vk−vi
vk−vj

is maximized when k is set to the maximum v possible. Let H be this maximum

vk. Then
F (vj)

F (vi)
≥ H−vi

H−vj
. Now we can compute:

f(v) = lim
ǫ→0

F (v + ǫ)− F (v)

ǫ

= lim
ǫ→0

F (v + ǫ)

ǫ
·

(

1−
F (v)

F (v + ǫ)

)

≤ lim
ǫ→0

F (v + ǫ)

ǫ
·

(

1−
H − v − ǫ

H − v

)

= lim
ǫ→0

F (v + ǫ)

H − v

=
F (v)

H − v
,

which implies f(v)
F (v)
≤ 1

H−v
, as desired.

Corollary 50. For any distribution which satisfies f(v)
F (v)
≤ 1

H−v
, then F (v) ≥ 1

H−v
for all v.

Proof. Proof by contradiction. Let F ∗(v) = 1
H−v

. Assume F (v) < F ∗(v) for some v. Let y be the

smallest value greater than v such that F (y) = F ∗(y). Note that y must exist by the Intermediate

Value Theorem. Then
∫ y

v
f(x)dx >

∫ y

v
f ∗(x)dx. By the Mean Value Theorem, there must exist

some z ∈ [v, y] such that f(z) > f ∗(z). Because of the minimality of y, it also must be true that

F (z) ≤ F ∗(z). This implies f(z)
F (z)

> f∗(z)
F ∗(z)

, which is a contradiction to

f(z)

F (z)
≤

f ∗(z)

F ∗(z)
=

(H − v)−2

(H − v)−1
=

1

H − v
.

.
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F.4 Omitted Formal Proofs in Section F.2

Lemma 51. For any fixed λ with φ(i, λ) ≥ φ(i + 1, λ) for some i, there exists an optimal x with

the following property: xi = xi+1.

Proof. Proof by contradiction. Assume that xi 6= xi+1 but φ(i, λ) ≥ φ(i+ 1, λ) for some optimal x.

In order for some x to be feasible for a distribution, the probability the item is allocated must be

≤ 1. Note that:

Pr[ item is allocated ] =
∑

x

m
∑

i=1

q(vi) · xi

= n
m
∑

i=1

q(vi) · xi.

Suppose we know that there exists some feasible x for some specific distribution. Then one way

to design a feasible x′ with every index the same except for a specific xi and xi+1 is to have

q(vi) · xi + q(vi+1) · xi+1 = q(vi) · x
′
i + q(vi+1) · x

′
i+1, because this will guarantee that the item is

allocated with probability ≤ 1. Furthermore, because x is monotone, we know that xi ≤ xi+1. Now

consider x′ which is equal to x except that x′i = x′i+1 =
q(vi)x′

i+q(vi+1)x′

i+1

q(vi)+q(vi+1)
for the previously mentioned

i. Recall that our objective is:

min
λ

max
x

m
∑

i=1

q(vi) · φ(i, λ) · xi.

If we consider the difference in the objective between x′i and xi, we find:

q(vi)φ(i, λ)(x
′
i − xi) + q(vi + 1)φ(i+ 1, λ)(x′i+1 − xi+1)

≥φ(i+ 1, λ) [(q(vi) + q(vi+1))x
′
i − q(vi)xi − q(vi+1)xi+1]

=φ(i+ 1, λ) [(q(vi)xi + q(vi+1)xi+1 − q(vi)xi − q(vi+1)xi+1]

=0.

This means we can improve the objective, which is a contradiction and thus implies xi must equal

xi+1.

Proof of Theorem 38. Let OBJ(λ, x) be the value of the objective function with specific inputs λ

and x and OBJ(λ) be the optimal value of the objective function given a specific λ.

Proof by contradiction. Assume theorem 38 is not true. Then there exists an optimal solution

OBJ(λ′) with some i such that φi > φi+1. Now consider a OBJ(λ′′) such that φi = φi+1 which is

constructed by redirecting flow in OBJ(λ) from φi+1 to φi. Then OBJ(λ′′) is identical to OBJ(λ′)

except at φi and φi+1. Note that when redirecting ǫ flow from φi+1 to φi, the change in our objective

is:

ǫ · (−q(vk)(vk − vi)(xi) + q(vk)(vk − vi+1)(xi+1)),

where k is some index greater than i + 1 and λk(i+1) > 0. Further note that k is guaranteed to

exist because originally φi+1 = vi+1 and vi+1 > vi, and so a non-monotonicity could not occur if no

such k existed. From 51 we know that for every λ there exists a subclass of optimal xs such that
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xi = xi+1 for any φi ≥ φi+1. Choose x′ to be one such optimal x for λ′ and x′′ to be another such

optimal x for λ′′. We can observe that

(λ′′, x′′) < (λ′, x′′)

because when xi = xi+1, any redirected flow changes the objective by xi · ǫ · (q(vk)(vi− vi+1)) which

is strictly negative. Therefore:

OBJ(λ′′) = OBJ(λ′′, x′′) < OBJ(λ′, x′′) ≤ OBJ(λ′, x′) = OBJ(λ′),

where the≤ is because x′ is optimal for λ′. This is a contradiction because OBJ(λ′) was optimal.

Proof of Lemma 42. Proof by contradiction. Assume Lemma 42 does not hold. Because q(vi) can

never be negative, it must be the case that φ(i, λ) is negative for some number of i. Choose an

optimal λ which minimizes the number of i such that φ(i, λ) < 0. Consider the largest value i such

that φ(i, λ) < 0 for the chosen λ. We first show that it must be true that xi = 0, by induction.

By Theorem 38, all φj are also negative for j < i. Our base case is that x1 = 0. We know that

q(v1) ·φ(1, λ) ≤ 0, and therefore q(v1) ·φ(1, λ) ·x1 is maximized at x1 = 0. Now assume that xk = 0

for some k ≤ i. We show that xk+1 = 0 as well. Note that xk+1 is maximized at the lowest xk+1

possible satisfying monotonicity constraints, because q(vk+1) · φ(k + 1, λ) ≤ 0. Because xk = 0, the

lowest xk+1 is also 0. Therefore, xi = 0.

Now consider the set S of all s in increasing order such that λsi > 0. Recall that:

φ(i, λ) =
q(vi)vi −

∑m
k=i q(vk) · (vk − vi)λki

q(vi)
.

Note that if we decrease λsi for any s ∈ S, φ(i, λ) always increases. Further note that because the

first term in the numerator of φ(i, λ) is non-negative, if φ(i, λ) is negative then there must exist

some λsi such that λsi > 0. Construct λ′ which is the same as λ but with the following changes:

in increasing order of s ∈ S, let λ′si = 0 and λ′ss = λsi until φ(i, λ) is positive. Then for the largest

s such that flow was redirected, add a to λ′si and subtract a from λ′ss where a is exactly amount

of additional λ′si needed to make φ(i, λ′) = 0. These transformations maintain the property that
∑s

l=0 λsl = 1 for each s, as desired. Reducing λsi does not change the objective because xi = 0, as

established earlier. Increasing λss also does not change the objective because q(vs)·(vs−vs)·λss = 0.

Therefore the value of the objective is the same for λ and λ′, and λ′ must be optimal if λ is optimal.

However, φi is now non-negative, which contradicts our assumption that λ minimized the number

of i such that φ(i, λ) < 0. Therefore must exist an optimal λ such that Property 39 is true.

Proof of Lemma 43. Proof by contradiction. Assume this is not true. Then there is some optimal

λ with i < j < k < l such that λli > 0 and λkj > 0. Let λ′ be the same as λ except for the following

changes: λ′kj = λkj − δ, λ′ki = λki+ δ, λ′li = λli− ǫ, and λ′lj = λlj + ǫ with δ > 0 and ǫ = δ·q(vk)·(vk−vi)
q(vl)·(vl−vi)

.

Then the change in φi is:

− δ · q(vk) · (vk − vi) + ǫ · q(vl) · (vl − vi)

=− δ · q(vk) · (vk − vi) +
δ · q(vk) · (vk − vi)

q(vl) · (vl − vi)
· q(vl) · (vl − vi)

=0.
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The change in φj is:

δ · q(vk) · (vk − vj)− ǫ · q(vl) · (vl − vj)

=δ · q(vk) · (vk − vj)− δ · q(vk) ·
(vk − vi)

(vl − vi)
· (vl − vj)

≤0.

where the last line is because vk−vi
vl−vi

·
vl−vj
vk−vj

is always greater than 1. Note that when the multiplier

of xl is non-negative for any l it is optimal to set xl = 1, so xi = xj = 1. Therefore our objective is

lower for λ′ than for λ when φj > 0. Otherwise, xi = xj = 0 and the objective for λ is the same as

for λ′. Thus if λ was optimal, λ′ must be optimal as well, a contradiction.

Corollary 52. If λ has i < j < k < l such that λli > 0 and λkj > 0, then λ is not optimal when

φj > 0.

Proof of Lemma 44. Proof by contradiction. Assume this is not true. Then there is some optimal

λ with j < i < k such that λki > 0 but xj has a positive multiplier. Construct λ′ which is the same

as λ but with the following changes: λ′kj = λkj + δ and λ′ki = λki + δ where δ is min(the amount

needed to lower φj to 0, λki). Note that when the multiplier of xl is non-negative for any l it is

optimal to set xl = 1, so xi = xj = 1. Then the change in objective from λ to λ′ is:

δq(vk)(vk − vi)− δq(vk)(vk − vj) < 0.

Therefore our objective is lower for λ′ than for λ and thus λ must not have been optimal, a

contradiction.

Proof of Theorem 45. Consider the set of optimal λ which satisfy Property 40. Choose the λ within

this set which minimizes the number of i such that φ(i, λ) < 0. Then λ necessarily satisfies Property

41 as well. We prove that there is an optimal λ′ which satisfies Properties 39,40,41 and will find

it by adjustments to λ. Let λ′ = λ. If λ′ satisfies 39, then we are done. Otherwise, we shall make

modifications to λ′ very similar to those done in the proof of 42.

Proof by contradiction. Consider the largest value i such that φ(i, λ) < 0 for the chosen λ and

the set S of all s in decreasing order such that λsi > 0. Make the following changes to λ′: in

decreasing order of s ∈ S, let λ′si = 0 and λ′s(i+1) = λsi until φ(i, λ) is positive. Then for the largest

s such that flow was redirected, add a to λ′si and subtract a from λ′s(i+1) where a is exactly amount

of additional λ′si needed to make φ(i, λ′) = 0. Reducing λ′si does not change the objective because

xi = 0. If φi+1 was non-positive before, then increasing λ′s(i+1) does not change the objective because

xj = 0 as well. Otherwise φi+1 was positive, so increasing λ′s(i+1) strictly decreases the objective.

Because λ satisfied Property 40 before, and we only redirected flow in decreasing order to φi+1,

it is impossible that we are now violating 40. Rigorously, there were no i < j < k < l such that

λli > 0 and λkj > 0. Consider the largest s such that λsi > 0 and it changes in λ′. The only way it

is possible to now have an i < j < k < l such that λ′li > 0 and λ′kj > 0 is if there is some t > s and

r ≤ i such that λtr > 0 (for the original λ). This is impossible because if r < i, Property 40 would

have been violated in our original λ, and if r = i, this would violate the maximality of s. We can

use this line of reasoning for every s where λsi 6= λ′si to show that λ′ must also satisfy Property 40.

Similarly, we cannot now be violating 41 because by Theorem 38 φj ≤ 0 for all j ≤ i and the only

index k for which λ′lk > λlk for any l is k = i+ 1.
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Therefore the value of the objective for λ′ is less than or equal to that of λ, so λ′ must be

optimal if λ is optimal. However, φi is now non-negative, which contradicts our assumption that λ

minimized the number of i such that φ(i, λ) < 0. Therefore must exist an optimal λ that satisfies

Properties 39,40,41.

Proof of Theorem 46. We first propose an algorithm to generate a λ which satisfies Properties 39,

40, and 41. The algorithm is as follows: Begin with λss = 1 for all values s. For each k from 1 to

m, choose the smallest i ≤ k such that φi > 0 and set λki to min(the amount needed to lower φi to

0, λkk). If λkk > 0, choose the next smallest i and repeat until i = k. We show that this algorithm

produces a λ which satisfies all three properties. First, φi for all i begin as non-negative values and

the algorithm never lowers φi below zero. Therefore, this λ satisfies Property 39. Second, at when

λki is allocated, it must be the case that φi > 0. In the previous iteration of our algorithm, when we

were considering for which j to increase λ(k−1)j , we chose the smallest j such that φj > 0. Therefore,

it must be the case that j ≤ i (or we would have chosen to increase λ(k−1)i instead of λ(k−1)j . This

means that higher indices contribute their λ to higher values, so Property 40 is satisfied. Third,

note that λki is only positive if φl = 0 for all l < i. Therefore Property 41 is satisfied.

Next, we need to show that any other λ than the one we have proposed does not satisfy at least

one of the three properties. Suppose there is some other λ′ which satisfies all three properties but

differs from λ. Choose i such that i is the minimum index where λsi differs from λ′si for at least one

s. Let S be the set of all such s. Let k be the minimum index in S. Let φi correspond to the result

under λ and φ′i correspond to the result under λ′. We consider four cases:

Case 1: Suppose φi > 0 and φi > φ′i. We show by contradiction there is no λ′ with these

characteristics which satisfies all three properties. Because λ satisfies Property 41 it must be the

case that λsj = 0 for all s ≥ k, j > i. Then any decrease in φi must be the result of an increase

in some λli with i < l < k. However, this means that some λlt for some t < i must be decreased,

because
∑

u≤l

λlu = 1 and λlu = 0 for u ≥ i. This contradicts our assumption that i is the minimum

index where λsi differs from λ′si because λst differs from λ′st as well.

Case 2: We consider the case in which φi > 0 and φi < φ′i. Because φi < φ′i, there must

have been some λki > λ′ki. If λ
′
ki lower than λki, there must be some λ′kj > λkj for j 6= i in order to

satisfy
∑

u≤k

λku = 1. By Property 41, φj = 0 for all j < i. Therefore there must be some positive λ′kl

for l > i. However, this violates Property 41 because φ′i > 0. Therefore, this case cannot occur.

Case 3: Suppose φi = 0 and λki < λ′ki. We show by contradiction there is no λ′ with these

characteristics which satisfies all three properties. In order to satisfy
∑

u≤k

λku = 1, it must be true

that λkj > λ′kj for some j. Furthermore, it must be the case that j > i because otherwise j would

contradict our assumption that i is the minimum index where λsi differs from λ′si. Because of Prop-

erty 39, it must be the case that some λli > λ′li so that φi ≥ 0. We also know that l > k because

of the minimality of k. But then we have i < j < k < l with λkj > 0 and λli > 0, which violates

Property 40. However, we know that λ satisfies Property 40, a contradiction.

Case 4: Suppose φi = 0 and λki > λ′ki. We show by contradiction there is no λ′ with these

characteristics which satisfies all three properties. In order to satisfy
∑

u≤k

λku = 1, it must be true
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that λkj < λ′kj for some j. Furthermore, it must be the case that j > i because otherwise j would

contradict our assumption that i is the minimum index where λsi differs from λ′si. Because of Prop-

erty 41 and λ′kj > 0, we know that φ′i = 0. Therefore it must be the case that some λli < λ′li. We

also know that l > k because of the minimality of k. But then we have i < j < k < l with λ′kj > 0

and λ′li > 0, which violates Property 40. Therefore, this case cannot occur.

These cases are all-inclusive, so we have shown that the λ generated by our algorithm is the

unique λ which satisfies all three properties.
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