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Abstract

We study online fair division when there are a finite number of item types and the
player values for the items are drawn randomly from distributions with unknown means.
In this setting, a sequence of indivisible items arrives according to a random online
process, and each item must be allocated to a single player. The goal is to maximize
expected social welfare while maintaining that the allocation satisfies proportionality in
expectation. When player values are normalized, we show that it is possible to with high
probability guarantee proportionality constraint satisfaction and achieve Õ(

√
T ) regret.

To achieve this result, we present an upper confidence bound (UCB) algorithm that
uses two rounds of linear optimization. This algorithm highlights fundamental aspects
of proportionality constraints that allow for a UCB algorithm despite the presence
of many (potentially tight) constraints. This result improves upon the previous best
regret rate of Õ(T 2/3).
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1 Introduction

The fair division of indivisible goods is a classic problem in computational social choice. In
this problem, a set of goods must be fairly allocated among n players, where each player
may have a different value for each good. For example, consider a central food bank which is
in charge of distributing food to multiple food pantries across the region. Each food pantry
may have differing preferences over various types of food depending on the populations they
serve. The goal is then to divide the goods in a way that is fair relative to each player’s
valuations.

Online fair division adds another degree of difficulty. Instead of all items being known
upfront, in online fair division goods arrive one at a time and must be irrevocably allocated
at the time of arrival. The first goods that arrive must be allocated without knowing what
future goods will be, and cannot be reallocated after more goods arrive. In the food bank
example, this setting is especially relevant for perishable goods, which the food bank must
quickly allocate after arrival. For example, (Mertzanidis et al., 2024) describes a partnership
with an Indiana program which redistributes rejected food by redirecting truck drivers from
landfills to food banks. Truck drivers arrive on the app in an online manner, necessitating
an online fair division algorithm to match drivers to food banks. The food available depends
on what was rejected on a given day, which may be unpredictable.

A common fairness requirement is proportionality, which insists that each player receive
at least 1

n
of their total value for all goods. In settings where the allocation of an item

may be randomized, it is natural to instead consider proportionality in expectation, where
the expectation is taken over both the random player values and the random item types.
For a given instance, there may be many proportional allocations, in which case we can
differentiate further by also considering efficiency. Past works have incorporated efficiency
by, for example, requiring Pareto optimality in addition to proportionality (Benadè et al.,
2024) or maximizing utilitarian social welfare subject to proportionality (Procaccia et al.,
2024).

We study the online fair division problem in the setting where player values are unknown at
the time of item arrival, and the value of a player for an item is only revealed if the item is
allocated to that player. Specifically, we consider the setting where there are m item types,
and each player’s value for an item of each type is drawn from an (possibly different) unknown
distribution. We would like to distribute items fairly in expectation to players despite not
knowing their true mean values for item types. In our food bank example, this setting is most
relevant when a food bank does not yet understand the needs of its food pantries, but can
easily collect information from each food pantry (e.g. in the form of surveys) regarding how
well items are received by each food pantry’s visitors. (Yamada et al., 2024) gives further
motivation for this setting in the form of allocating difficult tasks to users with different
strengths and distributing humanitarian aid, both of which are online fair division problems
in which values are only unveiled after requesting feedback. In such settings, it is necessary
to learn each player’s expected value for each item.

We consider the problem statement proposed in (Procaccia et al., 2024), which is as follows.
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Subject to the fairness constraints of proportionality in expectation, we strive for efficiency
as measured by the expected utilitarian social welfare of our solution. Specifically, we aim
to minimize the regret incurred when comparing to an optimal solution which must adhere
to the fairness constraint but knows the true means. As the algorithm does not know
the players’ true means, it will be impossible to achieve non-trivial regret and guarantee
proportionality in expectation at every time step. Therefore, we will instead require that
the algorithm with high probability satisfies the proportionality in expectation constraints
at every time step.

In summary, we consider online fair division with unknown means as a reinforcement learning
problem subject to fairness constraints. In this paper, we study how to balance exploration
and exploitation while also maintaining proportionality.

1.1 Our Contributions

In this work, we study the problem of online fair division with unknown means subject to
proportionality constraints. Our main result is that, when player values are normalized,
an algorithm can achieve Õ(

√
T ) regret while satisfying proportionality in expectation con-

straints at every time step with high probability (Theorem 3.1). This is an improvement
on the Ω̃(T 2/3) regret of the explore-then-commit algorithm in (Procaccia et al., 2024). The
algorithm that achieves our result (Algorithm 1) uses a variant of upper confidence bound
(UCB) logic with two rounds of linear program optimization. The first round of optimiza-
tion guarantees that with high probability the constraints are satisfied, but does not provide
sufficient exploration for UCB. Therefore, Algorithm 1 performs a second round of optimiza-
tion that exploits the underlying structure of the fairness constraints to sufficiently explore
without losing significant social welfare.

We complement our positive results for proportionality with an impossibility result for envy-
freeness, another commonly studied fairness notion. Specifically, we show that when values
are normalized, the best regret rate for envy-freeness is Õ(T 2/3), which matches the lower
bound for envy-freeness when values are not normalized. This highlights a fundamental
difference in the difficulty of maintaining envy-freeness versus proportionality when learning
unknown values.

1.2 Related Work

Our problem is most closely related to that in (Procaccia et al., 2024), which introduces the
problem setting we study. (Procaccia et al., 2024) studies both envy-freeness in expectation
and proportionality in expectation constraints, and provide explore-then-commit algorithms
which achieve Õ(T 2/3) regret while maintaining these fairness constraints with high prob-
ability. (Procaccia et al., 2024) also proves that no algorithm can have lower regret while
maintaining these fairness constraints. In contrast, we show that when players’ values are
normalized, there do exist algorithms which achieve Õ(

√
T ) regret while maintaining propor-

tionality in expectation at each time step with high probability. The algorithm we present
is an upper confidence bound algorithm rather than an explore-then-commit algorithm as
used in (Procaccia et al., 2024). While our algorithm relies on fundamental properties of
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fairness constraints similar to those in (Procaccia et al., 2024), the properties needed for
Õ(
√
T ) regret are stronger and are not satisfied by envy-freeness constraints.

We briefly mention two other related works in online fair division. (Yamada et al., 2024)
studies a similar setting in which a player’s value for an item type is unknown and is only
observed (with noise) when an item is allocated to that player. Rather than encoding fairness
as a constraint, however, (Yamada et al., 2024) instead maximizes Nash social welfare in the
objective function by leveraging algorithms which use dual averaging. (Benadè et al., 2024)
studies a somewhat different online fair division setting in which items arrive in an adversarial
manner, but the values of all agents for each item are known when the item arrives (and,
crucially, before item allocation).(Benadè et al., 2024) also considers efficiency, but in the
form of guaranteeing Pareto optimality rather than maximizing utilitarian social welfare.

There are many notions of fairness that have been studied in the multi-armed bandits liter-
ature. One such notion is that similar individuals are treated similarly (Chen et al., 2021;
Liu et al., 2017). Another related notion of fairness is that ‘worse’ arms are never pulled
with higher probability than ’better’ arms (Joseph et al., 2016b,a). These two notions of
fairness are incompatible with proportionality, as proportionality may require that worse
arms are pulled with higher probability. A third notion of fairness is the requirement that
every arm is pulled a minimum proportion of the time (Chen et al., 2020; Claure et al., 2020;
Li et al., 2019; Patil et al., 2021). Once again, this notion of fairness is not compatible with
proportionality, as there exist proportional allocations where every item type is not allocated
to every individual. We also focus solely on the non-contextual setting, however many works
also study fairness when there is context (Grazzi et al., 2022; Schumann et al., 2019; Wang
et al., 2021; Wu et al., 2023; Wei et al., 2024).

Because our fairness constraints and objective function are linear, our problem formulation is
also related to the problem of multi-armed bandits under general linear constraints. One area
of work studies linear bandits under linear safety constraints (Amani et al., 2019; Carlsson
et al., 2024; Moradipari et al., 2020). (Amani et al., 2019) shows that if there is a single linear
constraint and the optimal solution has positive slack with respect to this constraint, then
Õ(
√
T ) regret is possible. When the slack of the optimal solution is 0, (Amani et al., 2019)

presents an algorithm that has regret of Õ(T 2/3). Our setting differs from (Amani et al.,
2019) in that we have many linear constraints (one for each player), and the optimal solution
frequently has zero slack for some of the constraints. The existence of the Õ(

√
T ) regret

algorithm in our setting despite these added difficulties fundamentally relies on the structure
of our constraints. Other works studying linear bandits have constraints that differ from our
setting either because they are not applied at every time step or because they require slack
in the constraints (Liu et al., 2021; Pacchiano et al., 2021).

Another related area is bandits with knapsacks, which also studies bandits problems with
constraints (Liu et al., 2022; Badanidiyuru et al., 2018). However, the knapsack constraints
depend on resource consumption vectors rather than the unknown mean values, and therefore
these constraints are significantly different than proportionality constraints.
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2 Model

In our setting, there are N = [n] players and M = [m] item types, with T items arriving
over time. For any item of type k, the value of player i for that item is drawn from a
sub-Gaussian distribution with mean µ∗

ik. For each round t from 0 to T − 1, an item jt of
type kt is drawn uniformly at random. As shown in (Procaccia et al., 2024), the assumption
of uniformly random item types is WLOG, and all of our results hold when item types are
drawn from any arbitrary distribution. After observing kt, an algorithm allocates the item
jt (potentially randomly) to a player it, and then observes it’s value vt for jt. In order to
decide how to allocate jt, an algorithm may consult the history Ht = {kt′ , it′ , vt′}t′<t. Note
that the algorithm never observes the values of a player i for item j if j is not allocated to i.

An algorithm allocates items to players via fractional allocations X ∈ Rn×m, where a frac-
tional allocation is said to be valid if

∑
iXik = 1 for all k ∈ [m]. Intuitively, the kth column

of a fractional allocation represents how the algorithm will randomly allocate the item if the
item has type k. One valid fractional allocation is the uniform at random (UAR) allocation,
where every element is equal to 1

n
. At time t, before observing kt, an algorithm considers

the history Ht and outputs a valid fractional allocation X t = ALG(Ht). After observing
kt, the algorithm will then allocate jt based on the probabilities in ((X t)⊤)kt , i.e. the ktth
column of X t. The expected value of player i for a fractional allocation X can be written as
1
m
Xi · µ∗

i , and the sum over all players’ expected values for X is then

1

m

∑
i∈[n]

Xi · µ∗
i =

1

m
⟨X,µ∗⟩F .

Therefore, we can write the total expected social welfare of an algorithm which allocates
according to X t at time t as

E[social welfare of ALG] =
1

m

T−1∑
t=0

⟨X t, µ∗⟩F .

In this paper, we make two additional assumptions on the unknown mean matrix µ∗. The
first assumption is that there exist known a, b ∈ R such that 0 < a ≤ µ∗

ik ≤ b < ∞ for all
i, k. As shown in (Procaccia et al., 2024), this is a necessary assumption in order to achieve
o(T ) regret. The second assumption made in this paper is that the values for each player
are normalized. In other words, we assume that for all players i,

∑m
k=1 µ

∗
ik = 1. Informally,

normalizing values ensures that each player has equal say in the total social welfare. Nor-
malized values is a standard assumption in fair division literature (see, e.g., (Gkatzelis et al.,
2021; Bogomolnaia et al., 2022; Yamada et al., 2024)) and further justification can be found
in (Aziz, 2020). Note that assuming normalized values does not affect the proportionality
constraints, which are invariant to scaling.

2.1 Regret and Problem Formulation

In this section, we give our formal definitions for fairness and regret.
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The main fairness notion we study is proportionality in expectation. Proportionality in
expectation requires that, for every t, every player’s expected value for the allocation X t is
at least as much as that player’s expected value for the uniform at random allocation.

Formally, player i’s expected value for fractional allocation X t is equal to 1
m
X t

i · µ∗
i , where

the 1/m comes from every item having probability 1/m of being each item type. Player
i’s expected value for the UAR allocation is 1

nm
∥µ∗

i ∥1 = 1
nm

due to the normalized values
assumption. Therefore, a fractional allocation is proportional in expectation if and only if
1
m
X t

i · µ∗
i ≥ 1

nm
, which is equivalent to X t

i · µ∗
i ≥ 1

n
. We define proportionality in expectation

for an algorithm ALG in Definition 2.1.

Definition 2.1. An algorithm ALG that uses fractional allocation X t at time t satisfies
proportionality in expectation for µ∗ if

X t
i · µ∗

i ≥
1

n
∀t < T, i ∈ [n].

In this paragraph we will briefly summarize from (Procaccia et al., 2024) the justification for
studying proportionality in expectation rather than realized proportionality. First, note that
satisfying proportionality in expectation does not guarantee that every player prefers their
final set of allocated items at time T to a 1/n proportion of all T items (which we refer to
as realized proportionality). In fact, no algorithm can with high probability guarantee that
every player prefers their final set of allocated items at time T to a 1/n proportion of all T
items. Define the dis-proportionality of the final allocation as the maximum across all players
of how much each player prefers a 1/n proportion of all T items to their allocated items at
time T . An algorithm that satisfies proportionality in expectation has the asymptotically
optimal rate of dis-proportionality among all possible algorithms. See (Procaccia et al., 2024)
for more discussion about the optimality of proportionality in expectation, including formal
statements and proofs.

For any value matrix µ, let Y µ be the expected social welfare maximizing fractional allocation
that satisfies proportionality in expectation for µ. Formally, we define

Y µ := argmax ⟨X,µ⟩F

s.t. X t
i · µ∗

i ≥
1

n
∀i∑

i

Xik = 1 ∀k (1)

If the true mean values matrix µ∗ is known, then the social welfare maximizing algorithm
ALG that satisfies proportionality in expectation is simply the algorithm that chooses X t =
Y µ∗

for all t ∈ [0 : T − 1]. Using this optimal algorithm as a baseline, we define the regret
of an arbitrary algorithm ALG as follows.

Definition 2.2. Define Y µ∗
as the solution to LP (1) when µ = µ∗. Then the T -step regret

for µ∗ of an algorithm ALG that uses allocation X t at time t can be written as

Regret of ALG for µ∗ = T · ⟨Y µ∗
, µ∗⟩F −

T−1∑
t=0

⟨X t, µ∗⟩F .

5



The formal problem we address in this paper is as follows.

Problem 1. Design an algorithm ALG such that the following result holds for any known
n,m, T, a, b. Suppose that the true mean values satisfy a ≤ µ∗

ik ≤ b for all i ∈ [n], k ∈ [m].
Then with probability 1 − 1/T , ALG will both satisfy the proportionality in expectation
constraints for µ∗ and have regret for µ∗ of Õ(

√
T ).

2.2 Notation

Throughout this paper, we will use O(), Õ(),Ω(), Ω̃() notation to represent the limiting
behavior of functions with respect to T . For two matrices A and B, we use ⟨A,B⟩F to
represent the Frobenius product of A and B. We use Ai to represent the ith row of matrix A
and Ai ·Bi to represent the dot product between vectors Ai and Bi. For matrices µ, ϵ ∈ Rn×m,
define

B(µ, ϵ) = {µ′ ∈ Rn×m : µik − ϵik ≤ µ′
ik ≤ µik + ϵik ∀i, k}.

3 Main Results

3.1 Algorithm Overview

In this section, we present our main algorithm (Algorithm 1) and main theorem (Theorem
3.1).

Theorem 3.1. Suppose n,m, T, a, b are known and that the true mean values satisfy 0 <
a ≤ µ∗

ik ≤ b for all i ∈ [n], k ∈ [m]. With probability 1− 1/T , Algorithm 1 will both satisfy
the proportionality in expectation constraints for µ∗ and have regret for µ∗ of Õ(n5m3

√
T ).

The initial exploration phase of Algorithm 1 uses the fact that the uniform at random
allocation is guaranteed to satisfy proportionality in expectation constraints for any mean
value matrix µ. After the exploration phase, at each step we calculate an estimated mean
value matrix (µ̂t) and an uncertainty matrix (ϵt). Algorithm 1 then performs two rounds
of optimization. The first optimization of Algorithm 1 calculates an optimistic estimate of
expected social welfare and guarantees that the solution X̂ t will satisfy the proportionality
in expectation constraints for any µ ∈ B(µ̂t, ϵt). Therefore, if the true mean value matrix µ∗

is in B(µ̂t, ϵt), then X̂ t will satisfy the proportionality in expectation constraints for µ∗. The
algorithm unfortunately cannot directly use this X̂ t as the allocation in round t because X̂ t

does not necessarily provide sufficient exploration of all (item, player) pairs. See Section 3.2
below for more details.

To avoid this issue, the algorithm includes a second round of optimization in LP (3) that
calculates an allocation Ẑik for each (item, player) pair (i, k). Ẑik is guaranteed to sufficiently
explore the (i, k) pair and have social welfare that is not significantly less than the social
welfare of X̂ t. By using the fractional allocation X t that averages over all Ẑik, the algorithm
is able to guarantee that X t sufficiently explores every (player, item) pair. We note that
due to the maximization in the second round of optimization, the runtime of Algorithm 1
is exponential in n and m. In the algorithm notation below, subscripts represent matrix
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indexing while superscripts represent matrix names, i.e. Zik is a matrix, and X t
ik is the (i, k)

entry of X t.

Algorithm 1 UCB Online Fair Division

Require: n,m, T, a, b
for t← 0 to log2(T )

√
T − 1 do

Use X t = UAR.
end for
for t← log2(T )

√
T to T do

N t
ik ←

∑t−1
τ=0 1kτ=k,iτ=i

µ̂t
ik ← 1

Nt
ik

∑t−1
τ=0 1kτ=k,iτ=ivτ

ϵtik =
√

log2(6nmT )/(N t
ik)

(µt
U)ik = µ̂t

ik + ϵtik
Gt =

{
µ ∈ B(µ̂t, ϵt) :

√
Tµik ∈ Z ∀i, k

}
X̂ t ← Solution to the following LP:

max
X
⟨X,µt

U⟩F

s.t. Xi′ · µi′ ≥
1

n
∀i′ ∈ [n], ∀µ ∈ B(µ̂t, ϵt)∑

i

Xik = 1 ∀k (2)

∀i ∈ [n],∀k ∈ [m], Ẑik ← Solution to the following LP:

maxXik

s.t. Xi′ · µi′ ≥
1

n
∀i′ ∈ [n], ∀µ ∈ B(µ̂t, ϵt)

⟨X,µt
U⟩F ≥ ⟨X̂ t, µt

U⟩F −
4bn

a
max
µ∈Gt
⟨Y µ, ϵt⟩F

− 2⟨X̂ t, ϵt⟩F∑
i′

Xi′k′ = 1 ∀k′ (3)

Use X t = 1
nm

(∑
i,k Ẑ

ik
)

end for

3.2 Algorithm Intuition

In this section, we discuss the intuition behind the Õ(
√
T ) regret guarantee of Algorithm

1. First, we describe how Algorithm 1 relates to the standard multi-armed bandits upper
confidence bound algorithm. We then describe the importance of the second round of opti-
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mization in Algorithm 1 and why the algorithm does not simply use the fractional allocation
X̂ t at time t.

Consider the standard multi-armed bandits (MAB) setting, where there are n arms that each
have an unknown mean reward. At each time step, the algorithm chooses one arm, and the
goal is to maximize the T -step reward. In this setting, a standard UCB algorithm computes
estimates of the mean rewards µ̂t (where µ̂t

j corresponds to arm j) and an uncertainty vector
ϵt (where ϵtj is the uncertainty in µ̂t

j). The standard UCB algorithm at time t chooses arm
jt = argmaxj µ̂

t
j + ϵtj. The key idea underlying the low regret of standard UCB is that

[Regret at time t] = O(ϵjt). (4)

In online fair division, instead of choosing a single arm jt, the algorithm chooses a fractional
allocation X t. The generalization of Equation (4) to this setting is

[Regret at time t] = O
(
⟨X t, ϵt⟩F

)
. (5)

The standard UCB approach for finding a fractional allocation X t that satisfies Equation
(5) is to solve the optimization problem

argmax
X
⟨X,µt

U⟩F∑
i

Xik = 1 ∀k (6)

As in standard MAB, the solution to LP (6) will satisfy Equation (5). In online fair division,
however, the algorithm must choose an X t satisfying the proportionality constraints, and
the solution to LP (6) may not satisfy these constraints. Instead, Algorithm 1 uses LP (2)
(which has the same objective function as LP (6)) to find an allocation X̂ t that satisfies
the proportionality constraints with high probability. However, X̂ t may no longer satisfy
Equation (5). This means the algorithm cannot use the allocation X̂ t and bound the regret
with a UCB argument.

Because we cannot directly use X̂ t, Algorithm 1 instead leverages X̂ t to find an allocation
X t that will satisfy Equation (5). This is done using LP (3). LP (3) is designed to find
Zik such that the (i, k) entry of Zik is relatively large compared to the (i, k) entry of Y µ∗

.
Algorithm 1 chooses X t to be a linear combination of the Zik. Therefore, every entry in X t

will be relatively large compared to the corresponding entry in Y µ∗
. Furthermore, the second

constraint in LP (3) guarantees that X t will not have significantly less social welfare than
X̂ t. The bulk of the theoretical work in proving Theorem 3.1 is showing that the previous
two sentences together imply that X t will satisfy a (slightly more complicated) version of
Equation (5). Once we show that Equation (5) holds for X t, a UCB argument bounds the
regret of the algorithm to be Õ(

√
T ).

4 Properties of Proportionality Constraints

The proof of Theorem 3.1 relies on three key results about proportionality in expectation
constraints, which we outline in this section.
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The first result, Lemma 4.1, is the reason that Algorithm 1 can explore and satisfy the
proportionality in expectation constraints when the mean values are unknown.

Lemma 4.1. The uniform at random allocation satisfies the proportionality in expectation
constraints for any µ∗ ∈ [a, b]n×m.

proof. If every player is given exactly 1/n proportion of every item type as in the UAR
allocation, then every player has value 1/n for their allocation. This implies that the pro-
portionality in expectation constraints will be satisfied.

The second lemma shows that the total social welfare of the optimal allocation is continuous
in the mean value matrix.

Lemma 4.2. Define Y µ as the solution to LP (1). Then there exists a γ0 such that if
∥µ− µ′∥1 ≤ γ0 for µ, µ′ ∈ [a, b]n×m, then ⟨Y µ, µ⟩F − ⟨Y µ′

, µ′⟩F ≤ bn
a
∥µ− µ′∥1.

proof. We provide a brief proof sketch and defer the formal proof to Appendix C. Define
ϵ = ∥µ− µ′∥1. Let Zµ be the solution to the following modification of LP 1:

max⟨X,µ⟩F

s.t. Xi · µi −
1

n
≥ −ϵ ∀i ∈ [n]∑

i

Xik = 1 ∀k (7)

We next construct a fractional allocation W µ such that W µ is a solution to LP 1 and such
that ⟨W µ, µ⟩F − ⟨Zµ, µ⟩F ≥ −O(ϵ). That is to say, the social welfare of W µ is not much
worse than that of Zµ. Because W µ is a solution to LP 1, we have

⟨Y µ, µ⟩F ≥ ⟨W µ, µ⟩F ≥ ⟨Zµ, µ⟩F − nϵ.

Next, we note that Y µ′
is also a solution to LP 7 by construction. Therefore, it must be the

case that
⟨Zµ, µ⟩F ≥ ⟨Y µ′

, µ⟩F .

Combining the previous two equations gives that ⟨Y µ, µ⟩F ≥ ⟨Y µ′
, µ′⟩F − nϵ. By symmetry,

we also have that ⟨Y µ′
, µ′⟩F ≥ ⟨Y µ, µ⟩F − nϵ, and together with the previous equation this

proves the desired result.

Lemma 4.3 is the key reason that Algorithm 1 is able to find an allocation that satisfies the
proportionality constraints without losing significant social welfare. Informally, this lemma
states that for a known mean matrix µ, there exists an allocation X ′ such that X ′ has only
slightly less expected social welfare than Y µ and such that either X ′ = UAR, or X ′ is close
to Y µ and every proportionality constraint has non-negligible slack under X ′.

Lemma 4.3. Define Y µ as the solution to LP (1). Then for any γ < a
bn

and any µ ∈
[a, b]n×m, there exists an allocation X ′ such that ⟨X ′, µ⟩F ≥ ⟨Y µ, µ⟩F − bnγ

a
and either X ′ =

UAR or for each i ∈ [n],

9



1. X ′
i · µi ≥ 1

n
+ γ and

2. ∀i ∈ [n], k ∈ [m], |X ′
ik − Y µ

ik| ≤
nγ
a
.

The proof of Lemma 4.3 uses the same construction as in Lemma 2 of (Procaccia et al., 2024),
and we defer the proof to Appendix D. Informally, the construction either sets X ′ = UAR
or constructs X ′ by redistributing allocation away from players with large proportionality
surplus (i.e. players who strictly prefer their allocation to UAR). Unlike in (Procaccia et al.,
2024), the proof uses that this redistribution process always redistributes at most nγ/a from
any (player, item) pair, thereby satisfying the second condition of Lemma 4.3.

5 Proof Sketch of Theorem 3.1

We are now ready to present the proof sketch of Theorem 3.1. In Appendix A, we prove a
more general result than Theorem 3.1 that applies to any set of fairness constraints satisfying
general versions of Properties 4.1, 4.2, and 4.3. For this proof sketch, we will outline the
proof for proportionality constraints. See Appendix A for more details on the general version
of this result.

Proof sketch. By Lemma 4.1, the UAR allocations used for the first
√
T log2(T ) steps will

satisfy the proportionality constraints. The regret of the first
√
T log2(T ) steps is Õ(

√
T )

because the regret of any one step is upper bounded by b− a.

Now we study what happens in the algorithm for t ≥
√
T log2(T ). Define event E as the

event that µ∗ ∈ B(µ̂t, ϵt) and ∥ϵt∥1 = Õ(T−1/4) for every t. By two applications of Azuma–
Hoeffding’s inequality, Pr(E) = 1− 2

3T
. Under event E, for every round t and for all i, k, the

allocation Ẑik will satisfy the proportionality in expectation constraints for µ∗ due to the first
constraint in LP (3). Because X t is a linear combination of the Ẑik and the proportionality
constraints are linear, this implies that under event E, X t will also satisfy the proportionality
in expectation constraints for µ∗.

Now we will bound the regret of Algorithm 1 for t ≥ log2(T )
√
T . The key step in bounding

this regret is showing that the regret at time t ≥ log2(T )
√
T is

⟨Y µ∗
, µ∗⟩F − ⟨X t, µ∗⟩F = Õ

(
⟨X t, ϵt⟩F +

1√
T

)
. (8)

In order to show Equation (8), we first bound the regret at time t by an expression which
does not contain any terms involving µ∗.

Under event E, µ∗ ∈ B(µ̂t, ϵt). Gt forms a grid on B(µ̂t, ϵt), and therefore there exists some
element µg ∈ Gt such that ∥µ∗ − µg∥∞ ≤ 1√

T
. By Lemma 4.2, this implies that

|⟨Y µ∗
, µ∗⟩F − ⟨Y µg , µg⟩F | = O

(
1√
T

)
. (9)
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Using the first constraint of LP (3), we can bound ⟨X̂ t, µU
t ⟩F − ⟨Ẑik, µU

t ⟩F . By construction
of X t and µg, this implies that

⟨X̂ t, µg⟩F − ⟨X t, µ∗⟩F

= ÕT

(
max
µ∈Gt
⟨Y µ, ϵt⟩F + ⟨X̂ t, ϵt⟩F + ⟨Ẑik, ϵt⟩F

)
. (10)

Furthermore, a series of algebraic steps with a UCB argument shows that

⟨Y µg

, µg⟩F − ⟨X̂ t, µg⟩F

= Õ

(
max
µ∈Gt
⟨Y µ, ϵt⟩F + ⟨X̂ t, ϵt⟩F

)
. (11)

Combining Equations (9), (10), and (11) gives the following key result.

⟨Y µ∗
, µ∗⟩F − ⟨X t, µ∗⟩F

= Õ

(
⟨X̂ t, ϵt⟩F +max

µ∈Gt
⟨Y µ, ϵt⟩F + ⟨X t, ϵt⟩F +

1√
T

)
. (12)

To show Equation (8) from Equation (12), we bound the first two terms in Equation (12) by
O(⟨X t, ϵt⟩F + 1√

T
) conditional on event E. First, we show that for all i and k, X̂ t satisfies

the constraints of LP (3). We can then conclude that Ẑik
ik ≥ X̂ t

ik because Ẑik is the solution
to LP (3). X t is a linear combination of the Ẑik, and therefore the previous sentence implies
that X t

ik ≥ 1
nm

X̂ t
ik. This implies that

⟨X̂ t, ϵt⟩F = O(⟨X t, ϵt⟩F ). (13)

Under event E, Lemma 4.3 with a carefully chosen value of γ implies that for every µ ∈ Gt,
there exists an allocation Xµ such that ⟨Xµ, µ⟩F is similar to ⟨Y µ, µ⟩F and such that Xµ is a
solution to LP 3. The fact that Xµ is a solution to LP 3 is a result of the careful construction
of constraints in LP 3 and choice of γ for Lemma 4.3. Because Xµ is a solution to LP (3),
by the same logic as in the previous paragraph, we have that ⟨Xµ, ϵt⟩F = O(⟨X t, ϵt⟩F ). Xµ

was constructed in Lemma 4.3 such that the elements of Xµ are close to the elements of Y µ.
Therefore, ⟨Y µ, ϵt⟩F = O(⟨X t, ϵt⟩F + 1√

T
) for all µ ∈ Gt, or equivalently

max
µ∈Gt
⟨Y µ, ϵt⟩F = O(⟨X t, ϵt⟩F +

1√
T
). (14)

Putting together Equations (12), (13), and (14) gives the desired result of Equation (8).
Using Equation (8), we can conclude with an upper confidence bound argument to upper
bound the total T -step regret by

T−1∑
t=0

⟨Y µ∗
, µ∗⟩F − ⟨X t, µ∗⟩F

≤ Õ(
√
T ) +

T−1∑
t=log2(T )

√
T

Õ

(
⟨X t, ϵt⟩F +

1√
T

)
= Õ(

√
T ).
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5.1 Lower Bounds

The regret of Õ(
√
T ) in Theorem 3.1 is tight for T up to log factors because Ω̃(

√
T ) is the

standard lower bound for stochastic multi-armed bandit problems. A natural follow-up ques-
tion to Theorem 3.1 is whether an equivalent result holds when the algorithm must satisfy
other notions of fairness such as envy-freeness in expectation. For the online fair division
problem, envy-freeness in expectation can be represented as constraints in the following way:

Definition 5.1. An algorithm ALG that uses fractional allocation X t at time t satisfies
envy-freeness in expectation if for all t < T and all i ∈ [n],

(Xt)i · µ∗
i ≥ max

i′∈[n]
(Xt)i′ · µ∗

i ∀i ∈ [n].

Theorem 5.2 shows that an equivalent result to Theorem 3.1 does not hold for envy-freeness
in expectation, and in fact the best regret possible while maintaining envy-freeness in ex-
pectation is Ω̃(T 2/3).

Theorem 5.2. There exists a, b, n,m such that no algorithm can, for all µ∗ ∈ [a, b]n×m with
rows that add to 1, both satisfy the envy-freeness in expectation constraints and achieve regret
of less than T 2/3

log(T )
with probability at least 1− 1/T .

Proof sketch. The proof of this theorem extends the lower bound construction of (Procaccia
et al., 2024) to an example with normalized mean values. We prove the desired result by
contradiction. First, we assume that an algorithm ALG does achieve regret of less than
T 2/3

log(T )
and satisfies the envy-freeness in expectation constraints with probability greater than

1 − 1/T for all mean value matrices with normalized values. We then construct two mean
value matrices each with three players and three types of items that differ only in two entries
by T−1/3, and therefore are difficult to distinguish between. We then show that ALG cannot
simultaneously have low regret and satisfy the envy-freeness in expectation constraints for
both of these mean value matrices, which leads to a contradiction. See Appendix E for the
formal proof.

6 Discussion

6.1 Non-random Item Types

We studied the online fair division problem where T items arrive online and each item’s
type is drawn uniformly at random. In this section, we discuss how our results extend to a
similar problem where all item types are deterministic. Suppose that instead of a single item
arriving at each of T time steps, a basket containing exactly one of every item type arrives at
each of T/m time steps. The algorithm then must allocate every item in the basket among
the n players using a random fractional allocation. The goal in this alternative setting
is to maximize expected social welfare while satisfying the proportionality in expectation
constraints for each basket.

12



For the setting studied in this paper, there are three sources of randomness: random item
types, random player values, and random fractional allocations. In this alternative setting
the item types are not random, and therefore there are only two sources of randomness:
random player values and random fractional allocations. Note that m items with uniform at
random types are equal in expectation to a basket of m items with one of every item type.
Furthermore, both the constraints and the reward function for both settings are expressed
as expectations. Therefore, the difference in sources of randomness does not fundamentally
change the problem. This implies that the results from this paper (such as Theorem 3.1)
carry over to this setting with deterministic item types.

6.2 Limitations and Future Directions

In this section, we discuss the limitations of this paper and some potential future directions.
One limitation of Algorithm 1 is that the runtime is not linear due to the second round of
optimization. An open question is whether an algorithm with linear runtime can achieve the
same rate of regret. Furthermore, the main result of this paper, Theorem 3.1, only applies to
proportionality constraints. In the proof of Theorem 3.1, we do present a general algorithm
that achieves Õ(

√
T ) regret for any fairness constraints satisfying certain properties. An

open question is whether there exist other types of fairness constraints (e.g. equitability) for
which Õ(

√
T ) is also possible. We leave this as an open question for future work.

Another interesting question is whether the ideas in this paper can be extended to other
fair division problems. More broadly, the techniques used in this paper are not exclusive
to fairness constraints. Therefore, another question is whether similar ideas can lead to
algorithms that achieve Õ(

√
T ) regret under even more general classes of constraints.
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A Proof of Theorem 3.1

To prove Theorem 3.1, we use a general framework for analyzing fairness constraints intro-
duced in Procaccia et al. (2024). Note that Property A.4 is a new property not previously
studied in Procaccia et al. (2024), while Properties A.3 and A.5 are variants of properties
from Procaccia et al. (2024). We also note that the usage of the properties in the proof of
Lemma A.6 is significantly different than how these properties are used in Procaccia et al.
(2024).

We consider sets of fairness constraints {(Bℓ(µ
∗), cℓ)}Lℓ=1, where Bℓ(µ

∗) ∈ Rn×m and cℓ ∈
R. An algorithm ALG that uses allocation X t at time t satisfies these constraints if
⟨Bℓ(µ

∗), X t⟩F ≥ cℓ for all t. The expected social welfare maximizing allocation satisfying
these constraints for a given value matrix µ is

Y µ := argmax
X
⟨X,µ⟩F

s.t. ⟨Bℓ(µ), X⟩F ≥ cℓ ∀ℓ∑
i

Xik = 1 ∀k (15)

The regret of ALG (that uses allocation X t at time t) for constraints {(Bℓ(µ
∗), cℓ}Lℓ=1 can be

represented as T · ⟨Y µ∗
, µ∗⟩F −

∑T−1
t=0 ⟨X t, µ∗⟩F .

In this framework, we can define the proportionality in expectation constraints as follows:

Remark A.1. For every ℓ ∈ [n], construct Bℓ as follows. For every k ∈ [m], Bℓ(µ
∗)ℓk = µ∗

ℓk

and Bℓ(µ
∗)ik = 0 for every i ̸= ℓ. The proportionality in expectation constraints can be

written as
{(

Bℓ(µ
∗), 1

n

)}n
ℓ=1

.

We now state the general versions of Properties 4.1, 4.2, and 4.3.

Property A.2. A constraint (B, c) is satisfied by UAR if the uniform at random (UAR)
allocation satisfies the constraint, i.e. 1

n
∥B∥1 ≤ c.

Property A.3. Define Y µ as the solution to LP (15). Then there exists γ0, CPA.3 > 0
such that for any γ < γ0 and any µ ∈ [a, b]n×m, there exists X ′ such that ⟨X ′, µ⟩F ≥
⟨Y µ, µ⟩F − CPA.3γ and either X ′ = UAR or

1. ⟨Bℓ(µ), X
′⟩F ≥ cℓ + γ for all ℓ ∈ [L] and

2. ∀i ∈ [n], k ∈ [m], |X ′
ik − Y µ

ik| ≤ CPA.3γ.

Property A.4. Define Y µ as the solution to LP (15). There exists γ0, CPA.4 such that if
∥µ− µ′∥1 ≤ γ0 for µ, µ′ ∈ [a, b]n×m, then ⟨Y µ, µ⟩F − ⟨Y µ′

, µ′⟩F ≤ CPA.4∥µ− µ′∥1.

We also need one additional technical property.

Property A.5. There exists a constant K > 0 such that for all µ1, µ2 ∈ [a, b]n×m, if |µ1
ik −

µ2
ik| ≤ ϵik then |Bℓ(µ

1)ik −Bℓ(µ
2)ik| ≤ Kϵik for all i, k.

Observation 1. The proportionality in expectation constraints defined in Remark A.1 sat-
isfies Property A.5 with K = 1.
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Equipped with this additional property, we state the more general form of Algorithm 1 and
Theorem 3.1 in Algorithm 2 and Lemma A.6.

Lemma A.6. Suppose
{
{(Bℓ(µ), cℓ)}Lℓ=1

}
µ∈[a,b]n×m satisfy Properties A.2, A.3, A.4, and A.5.

Then with probability 1−1/T , Algorithm 1 satisfies the constraints {(Bℓ(µ
∗), cℓ)}Lℓ=1 and has

regret of Õ(KCPA.4CPA.3n
3m3
√
T ).

Algorithm 2 Fair Upper-Confidence-Bound

Require: n,m, T, a, b, {{(Bℓ(µ), cℓ)}Lℓ=1}µ
CPA.3 ← From Prop A.3, K ← From Prop A.5
for t← 0 to log2(T )

√
T − 1 do

Use X t = UAR.
end for
for t← log2(T )

√
T to T do

N t
ik ←

∑t−1
τ=0 1kτ=k,iτ=i

µ̂t
ik ← 1

Nt
ik

∑t−1
τ=0 1kτ=k,iτ=iViτ (jτ )

ϵtik =
√
log2(6nmT )/(N t

ik)

(µt
U)ik = µ̂t

ik + ϵtik
Gt =

{
µ ∈ B(µ̂t, ϵt) :

√
Tµik ∈ Z ∀i, k

}
X̂ t ← Solution to

max
X
⟨X,µt

U⟩F

s.t. ⟨Bℓ(µ), X⟩F ≥ cℓ ∀ℓ ∈ [L],∀µ ∈ B(µ̂t, ϵt)∑
i

Xik = 1 ∀k (16)

∀i ∈ [n],∀k ∈ [m], Ẑik ← Solution to the following LP:

maxXik

s.t. ⟨Bℓ(µ), X⟩F ≥ cℓ ∀ℓ ∈ [L],∀µ ∈ B(µ̂t, ϵt)

⟨X,µt
U⟩F ≥ ⟨X̂ t, µt

U⟩F − 4KCPA.3max
µ∈Gt
⟨Y µ, ϵt⟩F − 2⟨X̂ t, ϵt⟩F∑

i′

Xi′k′ = 1 ∀k′ (17)

Use X t = 1
nm

(∑
i,k Ẑ

ik
)

end for
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Now we can use Lemma A.6 to prove Theorem 3.1.

Proof of Theorem 3.1. By Observation 1, the proportionality in expectation constraints de-
fined in Remark A.1 satisfies Property A.5. Furthermore, by Lemmas 4.1, 4.2, and 4.3, the
proportionality in expectation constraints satisfy Properties A.2, A.3 (with CPA.3 =

bn
a
), and

A.4 (with CPA.4 = n). Therefore, Lemma A.6 directly proves Theorem 3.1.

B Proof of Lemma A.6

proof. First, we bound the regret and prove that the constraints are satisfied for the first
log2(T )

√
T steps. The regret of any single step is at most b − a due to the assumptions

of bounds on the mean values. Therefore, the regret of the first log2(T )
√
T steps can be

bounded by (b − a) log2(T )
√
T = Õ(

√
T ). Furthermore, by Property A.2, the fractional

allocations used in these steps satisfy the constraints because they are uniform at random
allocations.

For the rest of the proof, we will consider t ≥ log2(T )
√
T . First, we construct a high

probability event E such that under event E, the uncertainties ϵt are small and µ∗ ∈ B(µ̂t, ϵt).

Define event E as

E :=
⋂

t≥log2(T )
√
T

∥ϵt∥1 ≤ nm

√
2nm log2(6nmT )√

T

 ∩ {∀i ∈ [n], k ∈ [m], |µ̂t
ik − µ∗

ik| ≤ ϵtik
}
.

We can bound the probability of E using the following lemma.

Lemma B.1. Using the notation above, Pr(E) ≥ 1− 2
3T
.

The proof of Lemma B.1 can be found in Appendix B.1.

The bulk of the rest of this proof will focus on bounding the regret at every time t after the
warm-up period conditional on event E. We then conclude by showing that X t satisfies the
fairness constraints for all t conditional on event E.

For every µ ∈ Gt, we will now define an allocation Xµ using Property A.3 with a specific
choice of γ. This Xµ will be important for bounding the regret at time t. Consider any
µ ∈ Gt. Under event E and for sufficiently large T ,

γ := 4K⟨Y µ, ϵt⟩F ≤ 4K∥ϵt∥1 = Õ(Kn1.5m1.5T−1/4) ≤ γ0,

where K is the constant from Property A.5 and γ0 is from Property A.3. By Property A.3,
there exists a fractional allocation Xµ such that

|⟨Xµ, µ⟩F − ⟨Y µ, µ⟩F | ≤ CPA.34K⟨Y µ, ϵt⟩F . (18)

Furthermore, either Xµ = UAR or both

⟨Bℓ(µ), X
µ⟩F ≥ cℓ + 4K⟨Y µ, ϵt⟩F . (19)
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and
|Xµ

ik − Y µ
ik| ≤ CPA.34K⟨Y µ, ϵt⟩F ≤ O(KCPA.3∥ϵt∥1) (20)

We can also show that for every µ ∈ GY t, Xµ satisfies the constraints of the linear programs
in Algorithm 1.

Lemma B.2. Under event E, for every ν ∈ Gt, Xν —as defined above in Equations (18)–
(20)— satisfies the constraints of LP (16) and LP (17).

The proof of Lemma B.2 can be found in Appendix B.2.

For the next part of the proof, we will bound the regret at time t by quantities that do not
depend on µ∗. Define µg as the element in Gt that is closest to µ∗. Because µ∗ ∈ B(µ̂t, ϵt)
under event E and because Gt forms an evenly spaced grid on B(µ̂t, ϵt), we have that under
event E,

∥µ∗ − µg∥1 ≤
nm√
T
. (21)

When µ∗ ∈ B(µt, ϵt), for all i, k we have µ∗
ik ≥ µ̂t

ik − ϵtik. Because (µt
U)ik = µ̂t

ik + ϵtik, this
implies that µ∗

ik ≥ (µt
U)ik − 2ϵtik. Using this in the first line below, we have that

⟨Ẑik, µ∗⟩F ≥ ⟨Ẑik, µt
U − 2ϵt⟩F [Event E]

= ⟨Ẑik, µt
U⟩F − 2⟨Ẑik, ϵt⟩F

≥ ⟨X̂ t, µt
U⟩F − 4KCPA.3 ·max

µ∈Gt
⟨Y µ, ϵt⟩F − 2⟨X̂ t, ϵt⟩F − 2⟨Ẑik, ϵt⟩F [LP (17)]

≥ ⟨X̂ t, µg⟩F − 4KCPA.3 ·max
µ∈Gt
⟨Y µ, ϵt⟩F − 2⟨X̂ t, ϵt⟩F − 2⟨Ẑik, ϵt⟩F . [(µt

U)ik ≥ µg
ik]

(22)

We can now bound the regret at time t ≥ log2(T )
√
T as follows:

⟨Y µ∗
, µ∗⟩F − ⟨Xt, µ∗⟩F

= ⟨Y µ∗
, µ∗⟩F −

1

nm

∑
i,k

⟨Ẑik, µ∗⟩F

 [Def of Xt]

≤ ⟨Y µg

, µg⟩F + CPA.4∥µ∗ − µg∥1 −
1

nm

∑
i,k

⟨Ẑik, µ∗⟩F

 [Prop A.4]

≤ ⟨Y µg

, µg⟩F +
CPA.4nm√

T
− 1

nm

∑
i,k

⟨Ẑik, µ∗⟩F

 [ Eq. (21)]

≤ ⟨Y µg

, µg⟩F +
CPA.4nm√

T
− 1

nm

∑
i,k

(
⟨X̂t, µg⟩F − 4KCPA.3 · max

µ∈Gt
⟨Y µ, ϵt⟩F − 2⟨X̂t, ϵt⟩F − 2⟨Ẑik, ϵt⟩F

)
[Eq. (22)]

≤ ⟨Y µg

, µg⟩F − ⟨X̂t, µg⟩F + 4KCPA.3 max
µ∈Gt
⟨Y µ, ϵt⟩F + 2⟨X̂t, ϵt⟩F +

2

nm

∑
i,k

⟨Ẑik, ϵt⟩F +
CPA.4nm√

T

= ⟨Y µg

, µg⟩F − ⟨X̂t, µg⟩F + 4KCPA.3 max
µ∈Gt
⟨Y µ, ϵt⟩F + 2⟨X̂t, ϵt⟩F + 2⟨Xt, ϵt⟩F +

CPA.4nm√
T

. [Def of Xt]

(23)
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This gives us an upper bound on the regret at time t that does not depend on µ∗.

Next, we focus on the term ⟨Y µg
, µg⟩F − ⟨X̂ t, µg⟩F . By Lemma B.2, Xµg

satisfies the con-
straints of LP (16). Therefore,

⟨Xµg

, µt
U⟩F ≤ ⟨X̂ t, µt

U⟩F . (24)

We also need the following inequality:

⟨Xµg
, µg⟩F − ⟨X̂t, µg⟩F

= ⟨Xµg
, µt

U ⟩F − ⟨X̂t, µt
U ⟩F +

(
⟨Xµg

, µg⟩F − ⟨Xµg
, µt

U ⟩F
)
−
(
⟨X̂t, µg⟩F − ⟨X̂t, µt

U ⟩F
)

≤
(
⟨Xµg

, µg⟩F − ⟨Xµg
, µt

U ⟩F
)
−
(
⟨X̂t, µg⟩F − ⟨X̂t, µt

U ⟩F
)

[Eq. (24)]

≤ −
(
⟨X̂t, µg⟩F − ⟨X̂t, µt

U ⟩F
)

[µg
ik ≤ (µt

U )ik, ∀i, k]

= ⟨X̂t, µt
U − µg⟩F

≤ 2⟨X̂t, ϵt⟩F . (25)

Therefore, we have that

⟨Y µg

, µg⟩F − ⟨X̂ t, µg⟩F = ⟨Y µg

, µg⟩F − ⟨Xµg

, µg⟩F + ⟨Xµg

, µg⟩F − ⟨X̂ t, µg⟩F
≤ O

(
CPA.3K⟨Y µg

, ϵt⟩F + ⟨X̂ t, ϵt⟩F
)

[Equations (18), (25)]

≤ O

(
CPA.3Kmax

µ∈Gt
⟨Y µ, ϵt⟩F + ⟨X̂ t, ϵt⟩F

)
. (26)

Combining Equations (23) and (26), we have that

⟨Y µ∗
, µ∗⟩F − ⟨X t, µ∗⟩F ≤ Õ

(
CPA.3Kmax

µ∈Gt
⟨Y µ, ϵt⟩F + ⟨X̂ t, ϵt⟩F + ⟨X t, ϵt⟩F +

CPA.4nm√
T

)
.

(27)

Now we will bound each of the first two terms in Equation (27). By Lemma B.2, for all
µ ∈ Gt, Xµ satisfies the constraints of LP (17), and by construction X̂ t also satisfies the
constraints of LP (17). Therefore, we must have that for all i, k and all µ ∈ Gt,

Xµ
ik ≤ Ẑik

ik ≤ nm ·X t
ik (28)

and
X̂ t

ik ≤ Ẑik
ik ≤ nm ·X t

ik. (29)

Equation (28) implies that for every µ ∈ Gt,

⟨Xµ, ϵt⟩F ≤ nm · ⟨X t, ϵt⟩F . (30)

If there exists µ ∈ Gt such that Xµ = UAR, then Equation (28) implies that X t
ik ≥ 1

mn2 for
all i, k. This implies that

max
µ∈Gt
⟨Y µ, ϵt⟩F ≤ ∥ϵt∥1 ≤ mn2⟨X t, ϵt⟩F . (31)
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On the other hand, if there does not exist µ ∈ Gt such that Xµ = UAR, then for all µ ∈ Gt,

max
µ∈Gt
⟨Y µ, ϵt⟩F ≤ max

µ∈Gt
⟨Xµ, ϵt⟩F +max

µ∈Gt
(⟨Y µ, ϵt⟩F − ⟨Xµ, ϵt⟩F )

= max
µ∈Gt
⟨Xµ, ϵt⟩F +max

µ∈Gt

∑
i,k

|Y µ
ik −Xµ

ik|ϵ
t
ik

≤ max
µ∈Gt
⟨Xµ, ϵt⟩F +max

µ∈Gt

∑
i,k

O(KCPA.3∥ϵt∥1)ϵtik [Equation (20)]

≤ max
µ∈Gt
⟨Xµ, ϵt⟩F +O(KCPA.3∥ϵt∥21)

≤ nm · ⟨X t, ϵt⟩F + Õ(KCPA.3n
3m3/

√
T ). [Equation (30), Event E]

(32)

Combining Equations (31) and (32), we have that under event E,

max
µ∈Gt
⟨Y µ, ϵt⟩F ≤ Õ

(
mn2⟨X t, ϵt⟩F +

KCPA.4CPA.3n
3m3

√
T

)
. (33)

To bound the second term from Equation (27), note that Equation (29) implies that under
event E,

⟨X̂ t, ϵt⟩F ≤ nm · ⟨X t, ϵt⟩F . (34)

Finally, combining Equation (27), Equation (33), and Equation (34), we get that conditional
on event E,

⟨Y µ∗
, µ∗⟩F − ⟨X t, µ∗⟩F ≤ Õ

(
mn2⟨X t, ϵt⟩F +

KCPA.4CPA.3n
3m3

√
T

)
.

Conditional on event E, the total regret of the algorithm can therefore be bounded by

Regret(ALG) =
T−1∑
t=0

(
⟨Y µ∗

, µ∗⟩F − ⟨X t, µ∗⟩F
)

≤
log2(T )

√
T−1∑

t=0

(b− a) +
T−1∑

t=log2(T )
√
T

Õ

(
mn2⟨X t, ϵt⟩F +

KCPA.4CPA.3n
3m3

√
T

)

= Õ(
√
T ) +

T−1∑
t=log2(T )

√
T

Õ

(
mn2⟨X t, ϵt⟩F +

KCPA.4CPA.3n
3m3

√
T

)

= Õ

KCPA.4CPA.3n
3m3
√
T +mn2

T−1∑
t=log2(T )

√
T

⟨X t, ϵt⟩F


= Õ

KCPA.4CPA.3n
3m3
√
T +mn2

∑
i,k

T−1∑
t=log2(T )

√
T

X t
ikϵ

t
ik


= Õ

KCPA.4CPA.3n
3m3
√
T +

∑
i,k

mn2

T−1∑
t=log2(T )

√
T

X t
ik√
N t

ik

 . [Def of ϵik]

(35)
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We will focus on bounding the inner summation term
∑T−1

t=log2(T )
√
T

Xt
ik√
Nt

ik

. Define

E ′ =
T−1⋂

t=log2(T )
√
T

⋂
i,k

N t
ik ≥

1

m
·

t−1∑
s=log2(T )

√
T

Xs
ik

 .

Lemma B.3. Using the notation above, Pr(E ′) ≥ 1− 1
3T
.

The proof of Lemma B.3 can be found in Appendix B.3.

For t ≥ log2(T )
√
T , define

f(t) =

 1

m

t−1∑
s=log2(T )

√
T

Xs
ik

 .

f(t) is an monotonically increasing function with integer outputs and with f(log2(T )
√
T ) =

0. Consider a fixed ℓ ∈ [0 : f(T − 1)]. Define s1 as the smallest value of t such that f(t) = ℓ
and s2 as the largest value of t such that f(t) = ℓ. Then it must be the case that

s2−1∑
t=s1

X t
ik < m,

as otherwise f(s2) ≥ ℓ+ 1. Because 0 ≤ X t
ik ≤ 1, this implies that

∑
t:f(t)=ℓ

X t
ik =

s2∑
t=s1

X t
ik = Xs2

ik +

s2−1∑
t=s1

X t
ik ≤ m+ 1. (36)
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Under event E ′, for all i ∈ [n], k ∈ [m],

T−1∑
t=log2(T )

√
T

X t
ik√
N t

ik

≤
T−1∑

t=log2(T )
√
T

X t
ik√

⌊ 1
m

∑t−1

s=log2(T )
√
T
Xs

ik⌋

=
T−1∑

t=log2(T )
√
T

X t
ik√
f(t)

=

f(T−1)∑
ℓ=0

∑
t:f(t)=ℓ

X t
ik√
f(t)

=

f(T−1)∑
ℓ=0

∑
t:f(t)=ℓ

X t
ik√
ℓ

=

f(T−1)∑
ℓ=0

∑
t:f(t)=ℓ X

t
ik√

ℓ

≤
f(T−1)∑
ℓ=0

m+ 1√
ℓ

[Equation (36)]

≤
T∑

ℓ=0

m+ 1√
ℓ

[f(T − 1) ≤ T ]

≤ O(m
√
T ). (37)

Combining Equation (35) and (37), the total regret conditional on E ∩ E ′ is bounded by
Õ(KCPA.4CPA.3n

3m3
√
T ). Note that every X t satisfies the desired fairness constraints con-

ditional on event E due to the construction of LP (17). Therefore, the algorithm satisfies
the constraints for all steps t conditional on event E ∩ E ′. Finally, Lemma B.1 and Lemma
B.3 with a union bound gives us that Pr(E ∩ E ′) ≥ 1− 1/T , as desired.
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B.1 Proof of Lemma B.1

For sufficiently large T , by Hoeffding’s inequality we have that

Pr

(
∀t ≥ log2(T )

√
T , ∥ϵt∥1 ≤ nm

√
2nm log2(6nmT )/(

√
T )

)
≥ Pr

(
∀t ≥ log2(T )

√
T ,∀i ∈ [n], k ∈ [m], ϵtik ≤

√
2nm log2(6nmT )/(

√
T )

)
= Pr

(
∀t ≥ log2(T )

√
T ,∀i ∈ [n], k ∈ [m],

√
log2(6nmT )/N t

ik ≤
√
2nm log2(6nmT )/(

√
T )

)
= Pr

(
∀t ≥ log2(T )

√
T ,∀i ∈ [n], k ∈ [m], N t

ik ≥
√
T

2nm

)

= Pr

(
∀t ≥ log2(T )

√
T ,∀i ∈ [n], k ∈ [m], N t

ik ≥
√
T

nm
−
√
T

2nm

)

≥ Pr

(
∀t ≥ log2(T )

√
T ,∀i ∈ [n], k ∈ [m], N t

ik ≥
√
T

nm
−
√
0.5 log(3nmT )T 1/4

)
[Suff large T ]

≥ Pr

(
∀i ∈ [n], k ∈ [m], N

√
T

ik ≥
√
T

nm
−
√

0.5 log(3nmT )T 1/4

)
[N t

ik monoton. incr]

≥ 1− nme−2(
√

0.5 log(3nmT )T 1/4)2/
√
T . [Hoeffding’s Ineq]

= 1− 1

3T
. (38)

We will next show that

Pr
(
∀i ∈ [n], k ∈ [m], t ∈ [

√
T log2(T ) : T − 1], |µ̂t

ik − µ∗
ik| ≤ ϵtik

)
≥ 1− 1

3T
(39)

For any i, k, define r0ik, ...r
T−1
ik as follows. For t < NT

ik, define r
t
ik as player i’s realized value for

the item in round s, where s is the (t+1)th time that an item of type k is allocated to player
i. For t ≥ NT

ik, let r
t
ik be an i.i.d. draw from the distribution of player i’s value for an item of

type k. By this construction, r0ik, ...r
T−1
ik is a sequence of i.i.d. draws from the distribution of

player i’s value for item of type k. For every i, k and t, define µ̃t
ik = 1

t

∑t−1
s=0 r

s
ik. Therefore,

for every t, µ̃t
ik is a sum of exactly t i.i.d. random variables.

We now use Hoeffding’s Inequality to bound the following probability.

Pr

(
∀i ∈ [n], k ∈ [m], t ∈ [T ], |µ̃t

ik − µ∗
ik| ≤

√
log2(6nmT )/t

)
= Pr

(
∀i ∈ [n], k ∈ [m], t ∈ [T ], |tµ̃t

ik − tµ∗
ik| ≤

√
log2(6nmT )t

)
tµ̃t

ik is a sum of t+1 independent and identically distributed sub-Gaussian random variables.
Furthermore, E[tµ̃t

ik] = tµ∗
ik. Therefore, by an application of Hoeffding’s inequality for sub-

Guassian random variables, there exists a constant c > 0 (where c depends on the sub-

24



Gaussian value distribution) such that

Pr

(
∀i ∈ [n], k ∈ [m], t ∈ [T ], |tµ̃t

ik − tµ∗
ik| ≤

√
log2(6nmT )t

)
≥ 1− 2nmTe

−c
(√

log2(6nmT )t
)2

/t
[Hoeffding’s Inequality]

≥ 1− 2nmTe−c log2(6nmT )

= 1− 2nmT

(
1

6nmT

)c log(6nmT )

≥ 1− 1

3T
. [For sufficiently large T ]

Now, note that by construction, we have that µ̂t
ik = µ̃

Nt
ik

ik for any t ≤ T . Therefore, we have
that

Pr
(
∀i ∈ [n], k ∈ [m], t ∈ [

√
T log2(T ) : T − 1], |µ̂t

ik − µ∗
ik| ≤ ϵtik

)
= Pr

(
∀i ∈ [n], k ∈ [m], t ∈ [

√
T log2(T ) : T − 1], |µ̂t

ik − µ∗
ik| ≤

√
log2(6nmT )/N t

ik

)
≥ Pr

(
∀i ∈ [n], k ∈ [m], t ∈ [T ], |µ̃t

ik − µ∗
ik| ≤

√
log2(6nmT )/t

)
≥ 1− 1

3T
. (40)

This completes the proof of Equation (39)

Combining Equations (38) and (39) with a union bound, we have that Pr(E) ≥ 1− 2
3T
.

B.2 Proof of Lemma B.2

proof. Consider any µ′ ∈ B(µ̂t, ϵt). Because ν ∈ Gt and therefore ν ∈ B(µ̂t, ϵt), we must
have |µ′

ik−νik| ≤ 2ϵtik for all i, k. Therefore, by the Lipschitz continuity assumption, we have
that |Bℓ(µ

′)ik − Bℓ(ν)ik| ≤ 2Kϵtik. If X
ν = UAR, then ⟨Bℓ(µ

′), Xν⟩F ≥ cℓ by Property A.2.
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If Xν ̸= UAR, then by Equation (20) we have that for sufficiently large T under event E,

⟨Bℓ(µ
′), Xν⟩F

= ⟨Bℓ(µ
′), Xν⟩F − ⟨Bℓ(ν), X

ν⟩F + ⟨Bℓ(ν), X
ν⟩F

= ⟨Bℓ(µ
′)−Bℓ(ν), X

ν⟩F + ⟨Bℓ(ν), X
ν⟩F

≥ ⟨Bℓ(ν), X
ν⟩F − 2K

∑
ik

ϵtikX
ν
ik [Property A.5]

≥ ⟨Bℓ(ν), X
ν⟩F − 2K

∑
ik

ϵtik(Y
ν
ik + CPA.34K⟨Y ν , ϵt⟩F ) [Equation (20)]

= ⟨Bℓ(ν), X
ν⟩F − 2K

∑
ik

ϵtikY
ν
ik − 8K2CPA.3

∑
ik

ϵtik⟨Y ν , ϵt⟩F

= ⟨Bℓ(ν), X
ν⟩F − 2K

∑
ik

ϵtikY
ν
ik − 8K2CPA.3⟨Y ν , ϵt⟩F

∑
ik

ϵtik

≥ ⟨Bℓ(ν), X
ν⟩F − 2K⟨Y ν , ϵt⟩F − 2K⟨Y ν , ϵt⟩F [

∑
i,k

ϵtik ≤ Õ(T−1/4) ≤ 1

4KCPA.3

]

≥ cℓ. [Equation (19)]

In both cases, we showed that ⟨Bℓ(µ
′), Xν⟩F ≥ cℓ, therefore Xν satisfies the constraints of

LP (16).

Now we will show that Xν satisfies the constraints of LP (17). X̂ t satisfies the constraints
of LP (15) for µ = ν because X̂ t satisfies the constraints of LP (16) and ν ∈ B(µ̂t, ϵt).
Therefore, because Y ν is the best fractional allocation satisfying the constraints of LP (15)
for µ = ν, we must have that ⟨X̂ t, ν⟩F ≤ ⟨Y ν , ν⟩F . This in turn implies (using this in the
fourth line) that for sufficiently large T ,

⟨Xν , µU⟩F ≥ ⟨Xν , ν⟩F
= ⟨Y ν , ν⟩F + ⟨Xν , ν⟩F − ⟨Y ν , ν⟩F
≥ ⟨Y ν , ν⟩F − 4KCPA.3 · ⟨Y ν , ϵt⟩F [Equation (18)]

≥ ⟨X̂ t, ν⟩F − 4KCPA.3 · ⟨Y ν , ϵt⟩F
≥ ⟨X̂ t, µt

U − 2ϵt⟩F − 4KCPA.3 · ⟨Y ν , ϵt⟩F
≥ ⟨X̂ t, µt

U⟩F − 2⟨X̂ t, ϵt⟩F − 4KCPA.3 · ⟨Y ν , ϵt⟩F
≥ ⟨X̂ t, µt

U⟩F − 4KCPA.3 · max
µ′∈Gt
⟨Y µ′

, ϵt⟩F − 2⟨X̂ t, ϵt⟩F [ν ∈ Gt]

Therefore, Xν also satisfies all of the constraints of LP (17).

B.3 Proof of Lemma B.3

For sufficiently large T , Hoeffding’s inequality give that

Pr

(
∀i, k, N log2(T )

√
T

ik ≥ log2(T )

√
T

nm
−
√

1
2
log2(T )

√
T log(6nmT )

)
≥ 1− 1

6T
. (41)
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Define For t ≥ log2(T )
√
T , define

Mt = N t
ik −N

log2(T )
√
T

ik − 1

m

t−1∑
s=log2(T )

√
T

Xs
ik.

This Mt is a martingale with respect to the history because for all t,

E [Mt|Ht] = Mt−1 + E
[
1it−1=i,kt−1=k −

X t−1
ik

m

]
= Mt−1.

And furthermore, we have that for all t,

|Mt −Mt−1| ≤ 1.

Therefore, by the Azuma-Hoeffding Concentration Inequality, for all i, k, t,

Pr

N t
ik −N

log2(T )
√
T

ik ≤ 1

m

t−1∑
s=log2(T )

√
T

X t
ik −

√
0.5t log(6nmT 2)


= Pr

(
Mt ≤ −

√
0.5t log(6nmT 2)

)
≤ exp

(
−2 0.5t log(6nmT 2)

(t− log2(T )
√
T )

)
≤ 1

6nmT 2
.

Using a union bound, we have that

Pr

∀i, k, t ∈ [log2(T )
√
T : T ], N t

ik −N
log2(T )

√
T

ik ≥ 1

m

t−1∑
s=log2(T )

√
T

X t
ik −

√
2t log(6nmT 2)


≥ 1− 1

6T
. (42)

Using a union bound to combine Equations (41) and (42), with probability 1 − 1
3T

for

sufficiently large T , the following holds for all t ∈ [log2(T )
√
T : T ] and for all i, k.

N t
ik = N

log2(T )
√
T

ik +
(
N t

ik −N
log2(T )

√
T

ik

)
≥ log2(T )

√
T

nm
−
√

1
2
log2(T )

√
T log(6nmT 2) +

1

m

t−1∑
s=log2(T )

√
T

X t
ik −

√
0.5t log(6nmT 2)

≥ 1

m

t−1∑
s=log2(T 2)

√
T

X t
ik. (43)

Equation (43) implies that

Pr(E ′) ≥ 1− 1

3T
.
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C Proof of Lemma 4.2

Recall by Observation 1 that proportionality in expectation satisfies Lipschitz continuity
with K = 1. Define ϵ = ∥µ− µ′∥1. Let Zµ be the optimal solution to

max⟨X,µ⟩F

s.t. Xi · µi −
1

n
≥ −ϵ ∀i ∈ [n]∑

i

Xik = 1 ∀k (44)

The constraints in LP (44) imply the following bound.∑
i:Zµ

i ·µ−
1
n
<0

(
1

n
− Zµ

i · µi

)
≤ nϵ. (45)

Now we construct a fractional allocation W µ such that W µ satisfies the proportionality in
expectation constraints for µ and such that W µ does not have significantly less social welfare
than Zµ. We will have two cases.

Case 1: Informally, this is the case when the amount of total positive slack of Zµ in LP 1
is small relative to the amount of negative slack. If

a

b
·

∑
i:Zµ

i ·µ−
1
n
≥0

(
Zµ

i · µi −
1

n

)
≤

∑
i:Zµ

i ·µ−
1
n
<0

(
1

n
− Zµ

i · µi

)
, (46)

then let W µ = UAR. Because UAR is always a solution to proportionality constraints, we
know that W µ must be a solution to LP (1). Furthermore, for W µ = UAR we have that the
loss in social welfare between Zµ and W µ is

⟨Zµ, µ⟩F − ⟨W µ, µ⟩F =
∑
i

(
Zµ

i · µi −
1

n

)
≤

∑
i:Zµ

i ·µ−
1
n
≥0

(
Zµ

i · µi −
1

n

)

≤ bn

a
ϵ. Equations (45) and (46).

Case 2: When Equation (46) does not hold, the amount of positive slack is large relative
to the amount of negative slack, i.e.

a

b
·

∑
i:Zµ

i ·µ−
1
n
≥0

(
Zµ

i · µi −
1

n

)
>

∑
i:Zµ

i ·µ−
1
n
<0

(
1

n
− Zµ

i · µi

)
. (47)
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Therefore, we can transfer allocation from the players with positive slack to the players with
negative slack. Formally, if Equation (46) does not hold, then construct W µ as

W µ
i =


Zµ

i − b
a
·
∑

i′:Zµ
i′
·µi′−

1
n<0(

1
n
−Zµ

i′ ·µi′)∑
i′:Zµ

i′
·µi′−

1
n≥0(Z

µ

i′ ·µi′−
1
n)
·
(
Zµ

i · µi − 1
n

)
· Zµ

i

Zµ
i ·µi

if Zµ
i · µ− 1

n
≥ 0

Zµ
i + b

a
·
(
1
n
− Zµ

i · µi

)
·
∑

i′:Zµ
i′
·µi′−

1
n≥0

(
(Zµ

i′ ·µi′−
1
n)·

Z
µ
i′

Z
µ
i′
·µi′

)
∑

i′:Zµ
i′
·µi′−

1
n≥0(Z

µ

i′ ·µi′−
1
n)

otherwise

(48)

First we show that this W µ will satisfy the proportionality constraints.

For i such that Zµ
i · µ− 1

n
≥ 0, we have that

W µ
i · µi −

1

n

= Zµ
i · µi −

b
∑

i′:Zµ

i′ ·µi′−
1
n
<0

(
1
n
− Zµ

i′ · µi′
)

a
∑

i′:Zµ

i′ ·µi′−
1
n
≥0

(
Zµ

i′ · µi′ − 1
n

) · (Zµ
i · µi −

1

n

)
· Z

µ
i · µi

Zµ
i · µi

− 1

n

= Zµ
i · µi −

b
∑

i′:Zµ

i′ ·µi′−
1
n
<0

(
1
n
− Zµ

i′ · µi′
)

a
∑

i′:Zµ

i′ ·µi′−
1
n
≥0

(
Zµ

i′ · µi′ − 1
n

) · (Zµ
i · µi −

1

n

)
− 1

n

> Zµ
i · µi −

(
Zµ

i · µi −
1

n

)
− 1

n
[Eq. (47)]

= 0.

For any i such that Zµ
i · µ− 1

n
< 0,

W µ
i · µi −

1

n

= Zµ
i · µi +

b

a

(
1

n
− Zµ

i · µi

)
·

∑
i′:Zµ

i′ ·µi′−
1
n
≥0

((
Zµ

i′ · µi′ − 1
n

)
· Zµ

i′ ·µi

Zµ

i′ ·µi′

)
∑

i′:Zµ

i′ ·µi′−
1
n
≥0

(
Zµ

i′ · µi′ − 1
n

) − 1

n

≥ Zµ
i · µi +

(
1

n
− Zµ

i · µi

)
·

∑
i′:Zµ

i′ ·µi′−
1
n
≥0

(
Zµ

i′ · µi′ − 1
n

)∑
i′:Zµ

i′ ·µi′−
1
n
≥0

(
Zµ

i′ · µi′ − 1
n

) − 1

n

= Zµ
i · µi +

(
1

n
− Zµ

i · µi

)
− 1

n

= 0.

Therefore, W µ satisfies the proportionality constraints and is a solution to LP (1). The
only players in W µ that lose social welfare relative to Zµ are the players i that give away
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allocation, i.e. the players i such that Zµ
i · µ− 1

n
≥ 0. Therefore, we have that

⟨W µ, µ⟩F

≥ ⟨Zµ, µ⟩F −
∑

i:Zµ
i ·µ−

1
n
≥0

b
∑

i′:Zµ

i′ ·µi′−
1
n
<0

(
1
n
− Zµ

i′ · µi′
)

a
∑

i′:Zµ

i′ ·µi′−
1
n
≥0

(
Zµ

i′ · µi′ − 1
n

) · (Zµ
i · µi −

1

n

)
· Z

µ
i · µi

Zµ
i · µi

= ⟨Zµ, µ⟩F −
∑

i:Zµ
i ·µ−

1
n
≥0

b
∑

i′:Zµ

i′ ·µi′−
1
n
<0

(
1
n
− Zµ

i′ · µi′
)

a
∑

i′:Zµ

i′ ·µi′−
1
n
≥0

(
Zµ

i′ · µi′ − 1
n

) · (Zµ
i · µi −

1

n

)

= ⟨Zµ, µ⟩F −
b

a

∑
i′:Zµ

i′ ·µi′−
1
n
<0

(
1

n
− Zµ

i′ · µi′

)

≥ ⟨Zµ, µ⟩F −
bn

a
ϵ. [Eq (45)]

Therefore, we have shown that W µ satisfies the constraints of LP (1) and that ⟨W µ, µ⟩F ≥
⟨Zµ, µ⟩F − bn

a
ϵ. Recall that Y µ is the optimal fractional allocation for LP (1) and therefore

⟨Y µ, µ⟩F ≥ ⟨W µ, µ⟩F . Together, this implies that

⟨Y µ, µ⟩F ≥ ⟨W µ, µ⟩F ≥ ⟨Zµ, µ⟩F −
bn

a
ϵ. (49)

Furthermore,

Y µ′

i · µi −
1

n
= Y µ′

i · µi − Y µ′

i · µ′
i + Y µ′

i · µ′
i −

1

n

= Y µ′

i · (µi − µ′
i) + Y µ′

i · µ′
i −

1

n

≥ Y µ′

i · (µi − µ′
i)

≥ −∥µi − µ′
i∥1

≥ −ϵ.

Therefore, Y µ′
is a solution to LP (44) and therefore ⟨Zµ, µ⟩F ≥ ⟨Y µ′

, µ⟩F . Combining this
with Equation (49), we have that

⟨Y µ, µ⟩F ≥ ⟨Y µ′
, µ⟩F −

bn

a
ϵ

= ⟨Y µ′
, µ′⟩F + ⟨Y µ′

, µ− µ′⟩F −
bn

a
ϵ

≥ ⟨Y µ′
, µ′⟩F −

bn

a
ϵ. [(Y µ′

)ik ≤ 1 and ∥µ− µ′∥1 ≤ ϵ]

By symmetry, the same argument works in the reverse direction to show that ⟨Y µ′
, µ′⟩F ≥

⟨Y µ, µ⟩F − bn
a
ϵ. Combining both directions proves the desired result.
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D Proof of Lemma 4.3

To show Lemma 4.3, we will use the same construction as used to prove Lemma 2 in Procaccia
et al. (2024).

For i ∈ [n], define

Si = Y µ
i · µi −

1

n
. (50)

Si can be viewed as the amount of slack of player i’s proportionality constraint for Y µ. We
consider the following two cases.

Case 1:
∑n

i=1 Si ≤ b
a
nγ

In this case we take X ′ = UAR, which causes at most nb
a
γ decrease in social welfare relative

to Y µ.

Case 2:
∑n

i=1 Si >
b
a
nγ

Define

∆ik :=
Y µ
ik∑m

k′=1 Y
µ
ik′
· Si∑n

i′=1 Si′
· nγ
a
. (51)

Define X ′ as

X ′
ik := Y µ

ik −∆ik +
1

n

n∑
i′=1

∆i′k. (52)

Then as in Procaccia et al. (2024), we have that

X ′
i · µi −

1

n
≥ γ

and
n∑

i=1

m∑
k=1

∆ik =
nγ

a
. (53)

As in Procaccia et al. (2024), Equation (53) implies that the change in social welfare is upper
bounded by bnγ

a
. Furthermore, we also have that

|X ′
ik − Y µ

ik| ≤ max

(
∆ik,

1

n

n∑
i′=1

∆i′k

)
[Equation (52)]

≤
m∑

k′=1

n∑
i′=1

∆i′k′

≤ nγ

a
. [ Equation (53)]
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E Proof of Theorem 5.2

proof. Note that the proof structure is similar to that of Theorem 2 in Procaccia et al. (2024).
However, the construction provided below has more players and more items, which results
in a more complex proof.

Let a = 1, b = 40, n = 3, and m = 3. Furthermore, assume that all values come from
normal distributions with variance 1. We provide a proof by contradiction. First, assume
there exists an algorithm ALG such that for any µ∗ ∈ [a, b]3×3, with probability at least

1− 1/T ALG satisfies the envy-freeness constraints and has regret of less than T 2/3

log(T )
.

Next, consider the following two mean value matrices, where rows represent players and
columns represent items. Let ϵ = T−1/3.

µ1 =

20
42

21
42

1
42

19
42

19
42

4
42

1
42

1
42

40
42

 µ2 =

20
42

21
42

1
42

19
42

19
42

+ ϵ 4
42
− ϵ

1
42

1
42

40
42


Let P1 be the distribution of HT for algorithm ALG when µ∗ = µ1, and P2 likewise for
µ∗ = µ2.

The following lemma will help bound the KL-divergence between P1 and P2.

Lemma E.1. Under the proof by contradiction assumption stated above,

EP1 [N
T
23 +NT

22] ≤ T 2/3

and

Pr
P1

(
T−1∑
t=0

(X t
22 +X t

23 +X t
32) >

42T 2/3

log(T )

)
< 1/8. (54)

See Appendix E.1 for the proof of Lemma E.1. Using Lemma E.1, the KL-divergence between
P1 and P2 is

KL(P1, P2)

= EP1 [N
T
22] ·KL

(
N(

19

42
, 1), N(

19

42
+ ϵ, 1)

)
+ EP1 [N

T
23] ·KL

(
N(

4

42
, 1), N(

4

42
− ϵ, 1)

)
=

EP1 [N
T
22]ϵ

2

2
+

EP1 [N
T
23]ϵ

2

2

=
EP1 [N

T
23 +NT

22]ϵ
2

2

≤ 1

2
. [Lemma E.1] (55)

The following lemma is a result of the Bretagnolle-Huber inequality and is proven in Pro-
caccia et al. (2024).
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Lemma E.2. For any two probability distributions p and q defined on the same space and
for any measurable event F in this space, p(FC) + q(F ) ≥ 1

2
e−KL(p,q).

If we let p = P1, q = P2, and F =
{∑T−1

t=0 (X
t
22 +X t

23 +X t
32) ≤ 42T 2/3

log(T )

}
, we can then observe

that

Pr
P1

(
T−1∑
t=0

(Xt
22 +Xt

23 +Xt
32) >

42T 2/3

log(T )

)
+ Pr

P2

(
T−1∑
t=0

(Xt
22 +Xt

23 +Xt
32) ≤

42T 2/3

log(T )

)

≥ 1

2
e−KL(P1,P2) [Lemma E.2]

≥ 1/4. [Eq (55)]
(56)

Equation (54) and Equation (56) together give that

Pr
P2

(F ) = Pr
P2

(
T−1∑
t=0

(X t
22 +X t

23 +X t
32) ≤

42T 2/3

log(T )

)
≥ 1/8. (57)

Under event F , there must exist t ∈ [0 : T − 1] such that X t
22+X t

23+X t
32 ≤ 42T−1/3

log(T )
. We will

show that this implies that X t does not satisfy the envy-freeness in expectation constraints
for µ2. If X t

22 +X t
23 +X t

32 ≤ 42T−1/3

log(T )
, then X t

12 ≥ 1 − 42T−1/3

log(T )
. For sufficiently large T , this

implies that player 2’s envy in expectation at time t for player 1 is

X t
11 ·

19

42
+X t

12

(
19

42
+ ϵ

)
+X t

13

(
4

42
− ϵ

)
−X t

21 ·
19

42
−X t

22

(
19

42
+ ϵ

)
−X t

23

(
4

42
− ϵ

)
≥ X t

11 ·
19

42
+X t

12

(
19

42
+ ϵ

)
+X t

13

(
4

42
− ϵ

)
− 19

42
− 42T−1/3

log (T )

(
19

42
+ ϵ

)
− 42T−1/3

log (T )

(
4

42
− ϵ

)
≥ X t

12

(
19

42
+ ϵ

)
− 19

42
− 42T−1/3

log (T )

(
19

42
+ ϵ

)
− 42T−1/3

log (T )

(
4

42
− ϵ

)
≥
(
1− 42T−1/3

log (T )

)(
19

42
+ ϵ

)
− 19

42
− 42T−1/3

log (T )

(
19

42
+ ϵ

)
− 42T−1/3

log (T )

(
4

42
− ϵ

)
= ϵ− 84T−1/3

log (T )

(
19

42
+ ϵ

)
− 42T−1/3

log (T )

(
4

42
− ϵ

)
= T−1/3 − 84T−1/3

log (T )

(
19

42
+ T−1/3

)
− 42T−1/3

log (T )

(
4

42
− T−1/3

)
> 0.

Therefore, the envy-freeness constraints are not satisfied. This in turn implies with Equation
(57) that

Pr
P2

(EFE for µ2 not satisfied) ≥ Pr
P2

(F ) = Pr
P2

(
T−1∑
t=0

X t
22 +X t

23 +X t
32 ≤

42T 2/3

log(T )

)
≥ 1/8. (58)

Finally, this completes the proof by contradiction because ALG does not satisfy the envy-
freeness constraints for µ∗ = µ2 with probability at least 1− 1/T .
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E.1 Proof of Lemma E.1

proof. First, we will let E be the event that ALG both satisfies the envy-free in expectation
constraints for µ1 and that the regret of ALG is bounded by T 2/3

log(T )
when µ∗ = µ1. Recall

that the assumption in the proof by contradiction implies that PrP1(E) ≥ 1− 1/T .

When µ∗ = µ1, the allocation that maximizes expected social welfare subject to the envy-
freeness constraints is

Y µ1 =

0 1 0
1 0 0
0 0 1

 .

In order for X t to satisfy envy-freeness in expectation constraints for µ1, the following equa-
tion must hold.

19X t
21 + 19X t

22 + 4X23 ≥ 19X t
11 + 19X t

12 + 4X13. (59)

Substituting, we get that this is equivalent to

19X t
21 + 19X t

22 ≥ 19(1−X t
21 −X t

31) + 19(1−X t
22 −X t

32)− 4X23 + 4X13, (60)

and simplifying gives

X t
21 +X t

22 ≥ 1− 2

19
X23 +

2

19
X13 −

1

2
X t

31 −
1

2
X t

32. (61)

Using the above equation, we can show that the regret at time t for any X t that satisfies
the envy-freeness in expectation constraints for µ1 is

⟨Y µ1 , µ∗⟩F − ⟨Xt, µ∗⟩F

=
1

42

(
80− (20Xt

11 + 21Xt
12 +Xt

13 + 19Xt
21 + 19Xt

22 + 4Xt
23 +Xt

31 +Xt
32 + 40Xt

33)
)

=
1

42

(
80− (20(1−Xt

21 −Xt
31) + 21(1−Xt

22 −Xt
32) +Xt

13 + 19Xt
21 + 19Xt

22 + 4Xt
23 +Xt

31 +Xt
32 + 40Xt

33)
)

=
1

42

(
39− (−(Xt

21 −Xt
22)−Xt

22 +Xt
13 + 4Xt

23 − 19Xt
31 − 20Xt

32 + 40Xt
33)
)

≥ 1

42

(
39−

(
−
(
1− 2

19
Xt

23 +
2

19
Xt

13 −
1

2
Xt

31 −
1

2
Xt

32

)
−Xt

22 +Xt
13 + 4Xt

23 − 19Xt
31 − 20Xt

32 + 40Xt
33

))
=

1

42

(
40−

(
78

19
Xt

23 +
17

19
Xt

13 −Xt
22 − 18.5Xt

31 − 19.5Xt
32 + 40Xt

33

))
=

1

42

(
40−

(
78

19
Xt

23 +
17

19
Xt

13 −Xt
22 − 18.5Xt

31 − 19.5Xt
32 + 40(1−Xt

13 −Xt
23)

))
=

1

42

(
743

19
Xt

13 +
682

19
Xt

23 +Xt
22 + 18.5Xt

31 + 19.5Xt
32

)
≥ 1

42

(
Xt

23 +Xt
22 +Xt

32

)
.

Therefore, the regret of ALG if ALG satisfies envy-freeness in expectation for µ1 is

T · ⟨Y µ1 , µ∗⟩F −
T−1∑
t=0

⟨X t, µ∗⟩F ≥
1

42

T−1∑
t=0

X t
23 +X t

22 +X t
32.
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This implies that under event E,

T−1∑
t=0

X t
23 +X t

22 +X t
32 ≤

42T 2/3

log(T )
. (62)

Equation (62) implies that

EP1 [N
T
23 +NT

22 | E] = EP1

[
T−1∑
t=0

X t
23 +X t

22 | E

]
≤ EP1

[
T−1∑
t=0

X t
23 +X t

22 +X t
32 | E

]
≤ 42T 2/3

log(T )
.

Therefore, for large enough T ,

EP1 [N
T
23 +NT

22] = EP1 [N
T
23 +NT

22 | E] Pr
P1

(E) + EP1 [N
T
23 +NT

22|¬E] Pr
P1

(¬E)

≤ EP1 [N
T
23 +NT

22 | E] + T · 1
T

≤ 42T 2/3

log(T )
+ 1

≤ T 2/3. (63)

This is the first of the two desired equations. For the second equation, note that Equation
(62) also implies that for sufficiently large T ,

Pr
P1

(
T−1∑
t=0

(X t
23 +X t

22 +X t
32) >

42T 2/3

log(T )

)
≤ Pr

P1

(¬E) ≤ 1

T
<

1

8
. (64)
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