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Abstract

We study the online busy time scheduling model on heterogeneous machines. In our setting,
jobs with uniform length arrive online with a deadline that becomes known to the algorithm
at the job’s arrival time. An algorithm has access to machines, each with different associated
capacities and costs. The goal is to schedule jobs on machines by their deadline, so that the total
cost incurred by the scheduling algorithm is minimized. While busy time scheduling has been
well-studied, relatively little is known when machines are heterogeneous (i.e., have different costs
and capacities), despite this natural theoretical generalization being the most practical model
for clients using cloud computing services. We make significant progress in understanding this
model by designing an 8-competitive algorithm for the problem on unit-length jobs and providing
a lower bound of 2 on the competitive ratio. The lower bound is tight in the setting when jobs
form non-nested intervals. Our 8-competitive algorithm generalizes to one with competitive
ratio 8(2p− 1)/p < 16 when all jobs have uniform length p.
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1 Introduction

Busy time scheduling is an energy minimization model that is well-studied due to its applicability
to cloud computing and its relationship to energy usage [KSST10, CKM14]. In this model, there
are an unlimited number of heterogeneous machines available and n jobs arrive online, each with a
deadline. A machine of type k, for k ∈ Z≥0, has cost ck ≥ 1 and capacity Bk ∈ Z≥1, where the cost
indicates how much the algorithm must pay for each time step that the machine is executing at
least one job, and the capacity dictates how many jobs the machine can execute during each time
step. For each job j, we assume its release time rj and deadline dj become known to the algorithm
when the job is released. The release time is the same time that the job “arrives” online, in the
sense that the algorithm learns about the existence of the job.

We consider the setting where jobs have uniform length p (so for all jobs j, dj − rj ≥ p−1), and all
release times and deadlines are integral. Note that in our model, a unit-length job with rj = dj may
be feasibly executed at time slot rj . Jobs can be assigned to a machine that is already processing
jobs, provided there is spare capacity, and this may result in the machine running for a longer time.
The goal is to find a non-preemptive schedule completing all jobs by their deadlines with minimum
total cost.

Busy time scheduling is in part motivated by applications in cloud computing. Providers such as
Amazon Web Services (AWS), Google Cloud, and Microsoft Azure rent virtual machines, each of
which has some fixed cost and processing power. Customers are charged by how many working
server hours they use, and therefore they can minimize their costs by making smart choices about
which virtual machines they rent. Busy time scheduling captures the difficulty that customers face
in deciding whether they should greedily use cheap servers that only complete the jobs imminently
due, or whether they should fork up for a more expensive server to complete additional jobs that
are waiting to be processed.

One interpretation of the problem with unit-length jobs is as a model of a shuttle scheduling
problem. Suppose passengers arrive in airport parking, not in walking distance to the terminal,
and tell a dispatcher when their flight is. The shuttle company has shuttles of varying sizes that
incur different costs. The company needs to carry all passengers to the terminal, but would like to
minimize its cost in doing so.

There has been a surge of theoretical interest in busy time scheduling over the past decade or so,
with many variations on the model having been studied. Almost all of the work is for the case
of homogeneous machines, i.e., when machines are identical with the same costs and capacities.
We discuss the different variations of busy time scheduling on homogeneous machines in Section
1.2. Much less is known about the setting when machines are heterogeneous, despite this being
(arguably) the most practical setting. Most data centers consist of machines of different types,
built over time, and these in general have different costs and capacities.

In the special case of interval jobs1, there is no flexibility as to when a job is executed; each job has
to instantly be scheduled upon arrival. This lack of flexibility can make the resulting cost of any
schedule extremely high—for example, if single jobs arrive one after the other and we schedule them
all separately, we might pay a huge cost compared to a schedule that has the flexibility to wait and
bundle a group of jobs together. Ren and Tang [RT20] studied the problem of inflexible jobs with
heights, where each job may take up non-unit space on each machine, on heterogeneous machines
when the normalized cost-per-capacity rate is either monotonically increasing or decreasing as the

1This is also called the inflexible setting.
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machine capacity increases. They developed a O(1)-approximation algorithm (with constants 9
and 14, respectively) in the offline setting and a θ(µ)-competitive algorithm in the online setting,
for µ the max/min ratio of a job’s arrival time and deadline window length. Later, Liu and Tang
[LT21] proved that one can obtain the same guarantees (up to a constant factor), but without
the restrictions on the cost-per-capacity rate. They also provide matching lower bounds for both
settings.

We are the first to study the online setting when jobs are flexible, i.e., not interval, and machines
are heterogeneous. However, there is already a lower bound on the competitive ratio of Ω(

√
logµ)

[AV19]2. In order to study the problem without being totally restricted by this lower bound, we
must be willing to make some kind of trade-off; we choose to give up the generality of arbitrary
job processing lengths and heights. By focusing on uniform-length jobs, we make the problem
more tractable, while still maintaining the core theoretical difficulty of the setting. When jobs are
flexible, an algorithm must make the additional decision of when in a job’s active interval it should
be scheduled, and on heterogeneous machines, the algorithm must make the additional decision on
whether to pay more to process large batches, or pay less and defer other jobs’ completions. At
a high-level, the “online” and “flexible” aspects of the setting incentivize the algorithm to make
decisions lazily, while the “heterogeneous” aspect punishes the algorithm for making decisions too
late by forcing the algorithm to use some very expensive resource.

1.1 Our results

Our main result is the following theorem.

Theorem 1 There is an 8(2p − 1)/p-competitive algorithm for online uniform-length busy time
scheduling on heterogeneous machines with running time O(n log n), for n the total number of jobs
and p the processing length of any job.

Observe that the competitive ratio is at most 16 for any p. Due to space restrictions, we present
the proof of Theorem 1 for the case where p = 1 in the main body of the paper, and the complete
extension to uniform length jobs can be found in Appendix A. Overall, the setting of unit jobs
captures the essence of the algorithm and proof strategy for general uniform-length jobs, but with
a cleaner presentation.

Several straight-forward procedures give O(1)-competitive algorithms when jobs have agreeable
deadlines, which is when if job j arrives before job j′, then the deadline of job j′ cannot be before
that of j. For unit-length jobs with agreeable deadlines, we can improve our competitive ratio
from 8 to 2 by using a much simpler algorithm. Note that this result does not extend to the
uniform-length setting

Theorem 2 If jobs have agreeable deadlines, then there is a 2-competitive algorithm for online
unit-length busy time scheduling on heterogeneous machines with running time O(nK + n log n),
for n the total number of jobs and K the number of distinct machine types.

The above result is complemented by a matching lower bound on the competitive ratio.

Theorem 3 The competitive ratio of any deterministic online algorithm for online unit-length busy
time scheduling on heterogeneous machines is at least 2.

Moreover, Theorem 3 shows that the algorithm proving Theorem 2 is tight in its competitive ratio,
as our construction proving the lower bound is an agreeable instance.

2This result holds in the much simpler setting where jobs are inflexible and machines are homogeneous.

3



1.2 Related work

Busy time scheduling for arbitrary length jobs on homogeneous machines3 Even schedul-
ing interval jobs (which is easier than scheduling flexible jobs) on homogeneous machines is NP-hard
[WZ03].Khandekar et. al. [KSST10] showed a 5-approximation for busy time scheduling of flexi-
ble jobs with arbitrary heights. When jobs have uniform heights, Chang et al. [CKM14] showed
that algorithms developed by Alicherry and Bhatia [AB03] and Kumar and Rudra [KR05] are
4-approximations, and gave an improved algorithm that obtains a 3-approximation.

In the online setting when jobs are flexible, Koehler and Khuller [KK17] give a 5-approximation for
the busy time problem when machines have infinite capacities and obtain a O(logP ) competitive
ratio (where P is the ratio of maximum to minimum processing time) when machines have finite
capacities. Also in the infinite capacity setting, Ren and Tang [RT17] give an algorithm with a
competitive ratio of 4 + 2

√
2, and complement this result with a lower bound on the competitive

ratio of
√
5+1
2 , which holds for any deterministic online scheduler. One variant of the online busy

time problem considers the setting when job lengths are unknown at arrival time [LTC14, RTLC16].
Notably, the θ(µ)-competitive algorithm and matching lower bound of Ren and Tang [RT20] hold
for this setting as well. In our work, job lengths are uniform, and therefore known at arrival.

On homogeneous machines with interval jobs, Azar et al. [AV19] developed an online algorithm
with tight approximation factor θ(

√
logµ), where again µ is the ratio of the maximum interval

window length over the minimum. Improvements are known, but these involve certain assumptions
about the knowledge of the profile of jobs that have not yet arrived [BFM+21]. It is worth noting
that on homogeneous machines, one can find the optimal schedule in the online or offline setting if
jobs have unit length by using the algorithm by Finke et al. [FJQS08]4.

Power management and batch scheduling Much work in scheduling theory has focused on
energy minimization or power management, and busy time scheduling is one such model [YDS95,
IP05, ISG07, CCL+07, BKL+08, LWAT12, AGKK20]. The models that are most relevant to ours
study energy minimization when the machine(s) have some cost to turn on or off [CKM14, DKZ22,
CW21, AIS08]. In batch scheduling problems, machines can run groups of jobs simultaneously
(also called active time scheduling). A series of papers develop approximation algorithms in the
pre-emptive model [CGK14, KK18, CFL+22]. Classic objectives include throughput maximization
[BNGK+09] and functions of flow time and makespan [IM13], [WTFY17].

Capacitated covering problems

For d > 1, d-dimensional capacitated rectangle stabbing is NP-hard, although there do exist approx-
imation algorithms [HM91, GIK02, ELR+08]. When d = 1, algorithms for capacitated rectangle
stabbing solve the offline version of unit-length busy time scheduling on heterogeneous machines;
rectangles are 1-dimensional x−axis aligned lines that correspond to jobs’ arrival time, deadline
intervals, and stabbers can be equipped with costs and capacities to correspond to a batch of jobs
to be scheduled on a machine in a single time slot. This 1-dimensional version can be solved exactly
via a dynamic programming algorithm [ELR+08], which is based on the influential work of Baptiste
[Bap06].

Capacitated versions of covering problems related to vertex cover, facility location, and other
scheduling problems have also been studied [CN06, SK12, BP14, CS15]. Several online problems
also have a similar flavor to ours, as an algorithm has to make a choice between different options,

3Results are for machines with finite capacities, unless explicitly stated otherwise.
4The algorithm with a different proof of optimality appeared previously in work by Bodlaender and Jansen [BJ95].
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such as the ski-rental problem with multiple discount options [ZPX11], the parking permit problem
with multiple durations [Mey05], and capacitated interval coloring [EEL09].

1.3 Preliminaries

For the rest of the main body of the paper, we discuss this problem specifically for p = 1.

As a warm-up, in Section 2 we discuss our algorithm for unit jobs with agreeable deadlines. Then
in Section 3, we consider jobs with general active interval structures. We prove a lower bound
on the optimal solution’s cost in Subsection 3.2, and we prove an 8-competitive ratio for the case
when jobs have unit length (i.e., Theorem 1 in the case where p = 1), in Subsection 3.3. A lower
bound of 2 on the competitive ratio of any deterministic algorithm is provided to complement these
algorithmic results in Section 4. Appendix A contains the proof of Theorem 1 for general p, with
further preliminaries for that more general setting in Appendix A.1.

The formal set-up and notation throughout the main body of the paper is as follows. A set of
unit-length jobs arrive online, and it is denoted by J with |J | = n. Job j ∈ J is equipped with
integral arrival rj and deadline dj . A machine of type k ∈ Z≥0 can execute at most Bk ∈ Z≥1 many
jobs at once and costs ck ≥ 1 per time unit.

The labeling on the machine types is such that the capacity of the machines is increasing, i.e.,
B0 < B1 < . . .. Note we assume the ordering is strictly increasing, as if there were ever machines
with the same capacity but different costs, one would always use the cheaper machine of the same
capacity. Without loss of generality machines with larger capacity should cost more; e.g., if c1 ≤ c0,
then an optimal schedule could always use type 1 machines instead of type 0 machines. After these
considerations, let K denote the number of remaining machine types.

A batch of jobs X is defined by three features: (1) J(X), the set of jobs the batch contains, (2)
t(X), the batch’s type, which corresponds to the machine type that the jobs in J(X) should be
executed on, and (3) τ(X), the time at which the jobs in J(X) are executed on a machine of type
t(X). We denote a family of batches as X . A feasible schedule is a partition of jobs into batches if
for all X, |J(X)| ≤ Bt(X) and every j ∈ J(X) has rj ≤ τ(X) ≤ dj .

An optimal offline solution is denoted by OPT, with cost denoted by cost(OPT). The time horizon
is denoted [0, T ], with time steps τ ∈ [0, T ], where sometimes time steps have subscripts or take an
argument. Continuous intervals with interval endpoints in [0, T ] are denoted by I, also sometimes
with subscripts or taking an argument.

2 Warm-up: Agreeable Deadlines

In Subsection 2.1, we present a 2-competitive algorithm for the setting when jobs have agreeable
deadlines. Then in Subsection 2.2, we discuss extending to general job deadlines.

2.1 Proof of Theorem 2

We will show that Algorithm 1 is 2-competitive when jobs have agreeable deadlines. Algorithm 1 is
a straightforward greedy algorithm using the earliest deadline first heuristic—it collects jobs until
a deadline is reached, and then it creates optimal batches for scheduling the set of all the waiting
jobs. We use W to represent the set of waiting jobs.
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Algorithm 1 Greedy

Let W ← ∅,X ← ∅.
for τ ← 1 to T do

▷ Let J ′ be the set of jobs with arrival time τ .
▷ Update W ←W ∪ J ′.
if ∃ j∗ ∈W with dj∗ = τ then

▷ Xτ ← GetOptimalBatches(W ).
▷ Execute all batches in Xτ . // Thus completing all jobs in W
▷ Update X ← X ∪ Xτ .
▷ W ← ∅.

end if
end for
return A schedule X . // With cost at most 2 ·cost(OPT)

The subroutine GetOptimalBatches(A) takes as input a set of jobs A. It first finds the lowest cost
set of machines with total capacity |A|, then fills these machines with the jobs in A, outputting
a set of new batches. It can be implemented in time O(n · K) using a classic dynamic program,
where recall that K is the number of distinct machine types. We can initialize the optimal cost of
scheduling 0 jobs to 0. After initialization, we can then optimally compute the cost of scheduling
|A| jobs by solving the following recurrence:

cost(|A|) = min
k∈[K]

cost(|A| −min(Bk, |A|)) + ck.

This computation can be made once before Algorithm 1 starts, then the optimal values stored in
arrays can be used whenever Algorithm 1 needs them. We sort J by release times so that J ′ can
be found in time O(|J ′|). This involves simply maintaining an ordered set of jobs. To store W , we
use a min-heap with keys dj , for elements j ∈W . We do not have to go time slot by time slot, but
instead use the sorted J to find the next time where J ′ ̸= ∅ and compare this with the smallest key
in W . The overall running time is O(nK + n log n).

The following lemma crucially (though perhaps subtly) uses the agreeable deadlines structure. As
in Algorithm 1, let Xτ be the set of batches executed at time τ . For each set of batches Xτ executed
by Algorithm 1, construct an interval Iτ starting at the earliest release time of any job carried in
a batch in Xτ and ending at the latest deadline of any job in a batch in Xτ .

Lemma 1 At most two of the intervals Iτ as defined above overlap at any point in time.

Proof It suffices to prove that each such interval contains at most one left endpoint of another
interval. From the way the algorithm schedules all the jobs in W , we obtain that for any τ there
exists at most one Xτ . Assume we have Xτ and Xτ ′ with τ < τ ′. Then the left endpoint of Iτ ′

is strictly to the right of τ , as any job released at or before τ that has not been scheduled before
τ is scheduled in Xτ . This also implies that the left endpoint of Iτ ′ is strictly to the right of the
left endpoint of Iτ . Call two such intervals Iτ , Iτ ′ consecutive if τ < τ ′ and there is no τ ′′ with
τ < τ ′′ < τ ′ such that the algorithm produces an Xτ ′′ . If Iτ , Iτ ′ are consecutive, then there is no
Iτ ′′ whose left endpoint is between the left endpoints of Iτ and Iτ ′ .

Consider three consecutive intervals Iτ1 , Iτ2 , Iτ3 . For interval Iτ1 , let job j1 be a job scheduled in
Xτ1 with the earliest release time, breaking ties in favor of the job with the earliest deadline. Also
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for Iτ1 , let job j′1 be a job scheduled in Xτ1 with the latest deadline, breaking ties arbitrarily. Let
j2, j

′
2, j3, and j′3 be defined analogously for Iτ2 and Iτ3 .

In order to show that I1 and I3 do not overlap, we will show that

dj′1 ≤ dj2 = τ2 < rj3 . (1)

We first argue that τ2 = dj2 . Indeed, we must have τ2 ≤ dj2 since j2 is scheduled in Xτ2 . On the
other hand, if it were the case that τ2 < dj2 , then there is some job j scheduled in Xτ2 with deadline
dj = τ2, and jobs j and j2 break the agreeable relation because dj < dj2 and rj > rj2 (by the way
j2 is selected). See Figure 1.

𝝉2

j2

j

Figure 1: An illustration of an argument from the proof of Lemma 1, precisely why dj2 = τ2: If
τ2 < dj2 , then one of the dashed jobs/intervals must end at τ2. However, the upper dashed job
cannot exist since j2 is chosen as having the earliest deadline among the jobs scheduled in Xτ2 ,
while the lower dashed job cannot exist since it is not agreeable with j2.

The last inequality of 1 follows from the discussion in the first paragraph of the proof, with τ2
instead of τ and τ3 instead of τ ′. The same reasoning gives that τ1 < rj2 . We have that rj′1 ≤ τ1
since j′1 is scheduled in Xτ1 . Thus rj′1 < rj2 . If dj′1 > dj2 , then j′1 and j2 are not agreeable. Thus
the first inequality of Equation (1) also holds. ■

If deadlines are not agreeable, many such intervals can overlap at any time point. In the next
section, we use a more complicated interval construction to lower bound cost(OPT).

Proof [Proof of Theorem 2] As in the statement of Lemma 1, construct an interval Iτ for each
set of batches Xτ dispatched by the Greedy algorithm, where the left endpoint of the interval
corresponding to Xτ is the earliest release time of any job in ∪X∈XτJ(X) and the right endpoint is
the latest deadline of any job in ∪X∈XτJ(X). Lemma 1 implies that we can partition the intervals
into two sets S1 and S2 of disjoint intervals. Specifically for any two consecutive, overlapping
intervals, it suffices to have one such interval in S1 and the other in S2. Let J1 be the set of jobs
executed by batches in Xτ with Iτ ∈ S1, and J2 likewise for S2. Let OPT(Ji) denote an optimal
offline schedule for Ji, for i = 1, 2. Note that for any sets of jobs J and J ′, if J ′ ⊆ J , then
cost(OPT(J ′)) ≤ cost(OPT(J)). Then:

cost(Greedy) = cost(OPT(J1)) + cost(OPT(J2)) ≤ 2 · cost(OPT)

The equality is because the intervals in S1 are disjoint and the intervals in S2 are disjoint, and we
have sent all jobs in each interval using the lowest cost possible with GetOptimalBatches. ■
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2.2 Difficulty in non-agreeable deadlines

Any algorithm for this problem can execute batches only when it is forced to, i.e., when the current
time slot τ is the deadline of some uncompleted job j∗, as there is nothing to be gained from
executing a batch before a deadline. Additionally, jobs can always be assigned to an open batch by
an earliest deadline first (EDF) rule—that is, as long as a batch has space, repeatedly select from
the set of jobs released and not yet assigned to a batch the job with the earliest deadline, and assign
it to the batch. It follows that the only remaining decision for an algorithm is what type of batch
(and hence machine) should be used to execute job j∗ at time τ ; note that another way to phrase
this question is how many waiting jobs should be processed with j∗. An adversary can punish an
algorithm for processing too many waiting jobs at a time slot by dispatching a huge batch of jobs
soon after (as it would have been more cost efficient to execute every job together on a machine
with large capacity). On the flip side, the adversary can punish an algorithm for processing small
batches by not sending any new jobs (as a large batch would have been more cost efficient here).
We discuss why some simple heuristics to choose the machine type fail in Appendix B.

Agreeable deadlines were easy to handle because we can charge the cost of the Greedy algorithm to
simple lower bounds on cost(OPT), and recall that the lower bounds were due to the nice structure
of the intervals corresponding to the batches created by Greedy. For general deadlines, we are
able to track a more complicated set of intervals corresponding to batches in order to decide which
machine type to use at the deadline of an uncompleted job. Moreover, this complicated interval
structure implies we need a more careful lower bound on cost(OPT). Specifically, our algorithm
tracks a set of nested intervals [rj∗ , τ ] = I0 ⊆ I1 ⊆ · · · ⊆ Ik, all with right endpoint τ , where for
every ℓ ∈ {0, ..., k}, a batch of type ℓ was already executed in interval Iℓ. Eventually, our method
of constructing this sequence of nested intervals produces an interval Iℓ∗ that contains no time slot
where a batch of type ℓ∗ was executed. This indicates that our algorithm should create a batch of
type ℓ∗ at time τ .

3 Proof of Theorem 1 when p = 1

In the case where p = 1, we prove a lower bound on cost(OPT) in Subsection 3.2, and then use it to
analyze our algorithm that proves Theorem 1 when p = 1 in Subsection 3.3. We begin with some
additional preliminaries. The straightforward proofs of the propositions in the next subsection can
be found in Appendix A.1 under Propositions 16, 18, and 19.

3.1 Additional preliminaries for Section 3

We show in the following proposition that by a standard bucketing argument, we can assume that
all machine costs are powers of 2, with a loss of only 2 in the competitive ratio.

Proposition 2 With only losing a factor of 2 in the competitive ratio, we can assume in online
unit-length busy time scheduling on heterogeneous machines that for all k ∈ Z≥0, ck = 2p for some
p ∈ Z≥0, and c0 = 1.

Assumption 3 For k ∈ Z≥0, a machine of type k has cost ck = 2k.

This assumption follows with only a factor 2 loss in the competitive ratio because Proposition 2
allows us to assume that all machine costs are powers of 2, and if a machine of cost 2k is not present
for some k ∈ Z, one could just use 2k−k′ machines of cost 2k

′
, for k′ the largest type less than k that
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Figure 2: There are 11 jobs, each of which is depicted by a solid black line based on its release time
and deadline. The three different frames depict possible valid interval assignments for the jobs. The
dashed lines of different colors represent intervals of different types in each frame. There are four
types of machines, with costs 2k for k ∈ {0, 1, 2, 3} and with capacities {2, 5, 11, 22}. Each interval
assignment implies a different lower bound for cost(OPT), as in Lemma 7. We obtain better lower
bounds moving from left-to-right in the frames, with bounds 2, 9/4, and 5/2, respectively. Note
that an optimal assignment here has cost 5, with 3 batches with type 0 and 1 batch of type 1.

is present. Assumption 3 is useful in discussing the cost-per-job of the different machine types, as
well as in upper bounding the number of distinct machine types.

Proposition 4 Given Assumption 3, one can show that without loss of generality the cost-per-job
is non-increasing in the machine types, i.e., c0/B0 ≥ c1/B1 ≥ . . ..

Proposition 5 Given Assumption 3, the number of distinct machine types is bounded, with K ≤
log n.

It will be helpful to track intervals I ⊆ [0, T ], and often we associate a type and a set of jobs with
interval I. We let tI denote the associated type and JI ⊆ J the associated set of jobs.

3.2 A lower bound on cost(OPT)

We consider the following definition, for which Figure 2 is an accompaniment.

Definition 6 For a set of jobs J equipped with arrival times and deadlines in [0, T ], let an interval
assignment A be a family of tuples {(I, tI , JI)} of a continuous interval I ⊆ [0, T ], a type tI , and
a set of jobs JI ⊆ J . Let L denote the multi-set of all intervals I with (I, tI , JI) ∈ A and let I(j)
be the interval that job j is assigned to. We define a valid interval assignment as one such that the
following holds:

1. When tI ≥ 1, then |JI | = BtI−1, and when tI = 0, then |JI | = 1.

2. If job j is in JI , then [rj , dj ] ⊆ I.

3. For any two intervals I, I ′ ∈ L, if tI = tI′, then I and I ′ are disjoint.

4. Every job is assigned to at most one JI . If a job j is not assigned to any JI , then we write
I(j) = ∅.

9



Figure 3: Distribution of credits from batch X with k = 2. The dashed lines of different colors
represent intervals of different types in a valid interval assignment. For interval types 0, 1, and 2,
X distributes 2

tIj /|JI(j)| credits per job, and there are at most |JI(j)| jobs in each interval type.

For each job in interval types 3 and 4, X distributes 2k+1/Bk credits, and there are at most Bk

such jobs in interval types 3 and 4 combined.

A valid interval assignment represents a partition of jobs such that each job is assigned to at most
one interval which fully contains the job’s feasible region. Each interval is assigned a type such
that no two intervals of the same type overlap. Furthermore, an interval cannot be assigned fewer
jobs than its type allows. Valid interval assignments help us track how many jobs are available to
be processed at any given time point. We use valid interval assignments to lower bound the cost
of an optimal offline solution, as in the following lemma.

Lemma 7 For a set of unit jobs J equipped with arrival times and deadlines in [0, T ] satisfying
Assumption 3 and Proposition 4, let A = {(I, tI , JI)} be a valid interval assignment with L the
multi-set of all intervals I with (I, tI , JI) ∈ A. Then,

cost(OPT) ≥ 1

4
·
∑
I∈L

2tI .

Proof At a high level, we will prove this by introducing at most 4·cost(OPT) credits and then
distributing them to all jobs j for which I(j) ̸= ∅. We will do this in such a way that the sum of
the credits distributed can be shown to be at least

∑
I∈L 2tI , proving the inequality in the lemma

statement.

Suppose that for each batch X of type k that OPT uses, we distribute credits to jobs in J(X) in
the following way:

• To each job j in J(X) with tI(j) ≤ k we give 2tI(j)/|JI(j)| credits.

• To each job j in J(X) with tI(j) > k, we give 2k+1/Bk credits.

Figure 3 depicts the distribution of credits.

We will first prove the following helpful claims regarding credits.

Claim 8 When tI(j) > k, we have that 2
tI(j)

|JI(j)|
≤ 2k+1

Bk
.

Proof We observe that:
2tI(j)

|JI(j)|
= 2 · 2

tI(j)−1

BtI(j)−1

≤ 2 · 2
k

Bk
=

2k+1

Bk
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where the inequality is because tI(j) > k and we assumed (based on Proposition 4) that larger
machines are more cost efficient. ■

Claim 9 The credits distributed by X of type k to jobs with tI(j) ≤ k is at most 2k+1.

Proof We have required that all intervals with the same type must be disjoint, and therefore
batch X can intersect at most one interval I of each type k′ with k′ ≤ k. Moreover, since any job
assigned to an interval has its arrival time and deadline inside that interval, all the jobs in J(X)
that are assigned to an interval of type k′ are assigned to I above. From each such interval I, J(X)
contains at most |JI | jobs, and so the total amount of credits awarded by X to jobs associated
with I is at most 2k

′
. The total amount of credits awarded by X to jobs with tI(j) ≤ k is therefore

upper bounded by 1 + 2 + . . .+ 2k ≤ 2k+1. ■

Claim 10 The credits distributed by X of type k to jobs with tI(j) > k is at most 2k+1.

Proof There are at most Bk jobs in batch X, and batch X distributes 2k+1/Bk to each job with
tI(j) > k, so the total amount of credits awarded to jobs with tI(j) > k is upper bounded by 2k+1.
■

We use these claims to prove the lemma statement. Let credit(j) denote the amount of credit
awarded to job j. Then∑

I∈L
2tI =

∑
I∈L

∑
j∈JI

2tI

|JI |
=

∑
j:I(j)̸=∅

2tI(j)

|JI(j)|
≤

∑
j:I(j)̸=∅

credit(j) ≤ 4 · cost(OPT).

Note that the first sum is over L, which is a multi-set, so in particular an interval might contribute
to the sum multiple times. For the first inequality, we note that every interval I must intersect some
batch used by OPT, otherwise OPT would not have picked up the jobs associated with I (recall
that |JI | > 0). Therefore, every job j associated with an interval must receive at least 2tI(j)/|JI(j)|
credits (by construction and by Claim 8).

For the second inequality, we combine Claims 9 and 10 to observe that the total credits distributed
by each batch X of type k sent by OPT is at most 2k+2, while the cost incurred by OPT for using
batch X is 2k. Therefore, the total amount of credit awarded for all batches used by OPT will not
exceed 4·cost(OPT). This finished the proof of Lemma 7. ■

The constant of 1/4 given by Lemma 7 is tight, as we show in Appendix C.

3.3 Main algorithm and analysis

We use Algorithm 2 to prove Theorem 1 for when p = 1. The algorithm scans the time horizon
until we reach a time slot τ where some job j is uncompleted and has its deadline. Algorithm 2
must decide which machine type to use, and this decision is made by the subroutine in Algorithm
3. A batch X ∈ X of type t(X) executed at time τ(X) completes jobs J(X), which are the (at
most) Bt(X) jobs with earliest deadline that are available at τ(X) and not yet completed by that
time. As before, W is the set of jobs waiting to be scheduled.

Recall that in the proof of the lower bound, it was helpful to associate a type tI and a set of jobs
JI to interval I. In the algorithm analysis, it will be helpful to associate a type t(X), two sets
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Algorithm 2 The main algorithm for unit jobs

Let W ← ∅, τ ← 0, and X ← ∅.
while τ ̸= NULL do

▷ Let J ′ be the set of jobs with arrival time τ .
▷ Update W ←W ∪ J ′.
while ∃ j∗ ∈W with dj∗ = τ do // If many such j∗, choose arbitrarily from them

▷ Run Algorithm 3 with inputs τ , W , j∗, and X , which outputs new batch X∗,
equipped with t(X∗), J(X∗), τ(X∗), S̃(X∗), Ĩ(X∗).
▷ Update X ← X ∪X∗ and W ←W \ J(X∗).
▷ Add {(Ĩ(X∗), t(X∗), S̃(X∗)} to {(Ĩ(X), t(X), S̃(X))}X∈X .

end while
Increment τ ← τ + 1, or let τ = NULL if time has ended.

end while
Return X .

of jobs S̃(X) and J(X), and an interval Ĩ(X) to batch X. It is not surprising to see t(X) as the
associated type, but what might be surprising is to see two sets of associated jobs. While J(X) are
the jobs in batch X, S̃(X) are the jobs we charge to X for our analysis, where jobs may be paying
for a batch other than the one they are a part of.

Intuitively speaking, we employ a type of “pay-it-forward” philosophy. We charge the cost of one
of the batches that the algorithm produces to the cost that OPT expends to execute one job in that
batch (which we will refer to as the critical job) and the non-critical jobs in another batch. The
critical job in batch X is the job j∗ ∈ J(X) with deadline at X’s execution time, i.e. dj∗ = τ(X); if
there are many such jobs, we arbitrarily choose one to be the critical job of the batch. To determine
S̃(X), throughout the algorithm we will keep track of an interval associated with batch X, which we
denote by Ĩ(X). Note this is a slight abuse of notation from the lower bound subsection, where we
let I(j) denote the interval containing job j. Additionally, tracking S̃(X) and Ĩ(X) is not necessary
for the algorithm (hence they are given the additional tilde in the notation), but for clarity in the
analysis, we construct them in Algorithm 3 and keep them in Algorithm 2.

In order to use our lower bound from the previous subsection, we will use the batches to construct
a valid interval assignment (as in Definition 6). A visualization of the intervals we construct is pro-
vided in Figure 4. Note that Algorithm 2 sets t

Ĩ(X)
= t(X) when it defines {(Ĩ(X), t(X), S̃(X))}X∈X

as an interval assignment. We prove that the conditions for Definition 6 hold in Lemmas 11 and
13 and Proposition 12.

Lemma 11 Algorithm 2 produces {(Ĩ(X), t(X), S̃(X))}X∈X that satisfy Conditions (1) and (2) of
being a valid interval assignment (Definition 6).

Proof Let X ∈ X and let τ = τ(X). If t(X) = 0, then indeed there is only the critical job
in S̃(X), so |S̃(X)| = 1. Further, the critical job j∗ completely determines the interval, with
Ĩ(X) = [rj∗ , dj∗ ]. Thus, Conditions (1) and (2) are satisfied when t(X) = 0.

Fix t(X) = k > 0. Batch X is created at the right endpoint of Ĩ(X), recall that this endpoint is
time τ . Consider the sequence of nested intervals that the algorithm built up to construct Ĩ(X), i.e.,
I0, I1, . . . , Ik, where now Ĩ(X) = Ik. These are indeed nested intervals, since for all j = 0, . . . , k−1,
Ij contains τj and Ij+1 is defined by Ij+1 ← Ij ∪ [τ ′j , τj ]. Also note that the right endpoint of Ĩ(X)

is τ . Associated with these intervals are batches X0, X1, . . . , Xk−1 ∈ X that forced interval Ĩ(X)
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Algorithm 3 Deciding the next batch for unit jobs

Input: time τ , waiting jobs W , critical job j∗ with dj∗ = τ , and batches X , where every X ∈ X
is equipped with t(X), J(X), τ(X), S̃(X), Ĩ(X).
▷ Let k ← 0.
▷ Let I0 ← [rj∗ , τ ].
while Ik contains a time slot τk := τ(Xk) with t(Xk) = k for some Xk ∈ X do
// Only the latest such τk is stored

▷ Let jk be a job in J(Xk) with the earliest arrival time. // Tie-break arbitrarily
▷ Let τ ′k be the arrival time of jk.
▷ Set Ik+1 ← Ik ∪ [τ ′k, τk].
▷ Increment k ← k + 1.

end while
Set I∗ ← Ik and S∗ ← {j∗}.
if k > 0 then

Add all the non-critical jobs of Xk−1 to S∗.
end if
▷ Let J∗ be the Bk (or |W | if |W | < Bk) jobs in W with earliest deadline. // Tie-break
arbitrarily after putting in j∗

▷ Create batch X∗ with type t(X∗)← k, execution time τ(X∗)← τ , and jobs J(X∗)← J∗.
▷ Define Ĩ(X∗)← I∗ and S̃(X∗)← S∗.
Return X∗.

to be created (see Algorithm 3). Recall that τ ′ℓ is the arrival time of the earliest arriving job in

J(Xℓ). Since τ ∈ Ĩ(X), we have that for all τ̂ ∈ Ĩ(X), either τ̂ ∈ I0 or there exists some 0 < ℓ < k
such that τ̂ ∈ [τ ′ℓ, τℓ].

We prove by induction on ℓ < k that Xℓ is a full batch (that is, |J(Xℓ)| = Bt(Xℓ)), and all jobs in
J(Xℓ) have deadline no later than τ .

Base case: Here, ℓ = 0. Let j∗ be the critical job of X. Note that τ(X0) = τ0 ∈ I0 , the
left endpoint of I0 is rj∗ and the right endpoint of I0 is τ = dj∗ . By construction, j∗ ∈ W and
J(X0) ∩W = ∅ (recall that τ0 ≤ τ and therefore the jobs in J(X0) where removed from W during
the construction of X0). Hence job j∗ is not in batch X0. Since τ0 ∈ [rj∗ , dj∗ ], the job j∗ already
belonged to W when X0 was constructed. Since j∗ ̸∈ J(X0), we can deduce that batch X0 is full
and each job in J(X0) has deadline at latest τ = dj∗ due to the EDF rule.

Induction step: Fix some integer 1 ≤ ℓ < k. Assume that for all 0 ≤ ℓ′ < ℓ, Xℓ′ is filled to its
capacity, and all the jobs in batch Xℓ′ have deadline no later than τ . We will show that Xℓ is filled
to its capacity, and all the jobs in batch Xℓ have deadline no later than τ . Since Xℓ exists, either
τℓ ∈ I0 (in which case the reasoning from the base case applies), or there exists some µ < ℓ with
τℓ ∈ [τ ′µ, τµ]. The latter case is the interesting one, so we fix a smallest such µ. This means that
τℓ < τµ, so batch Xℓ was created before batch Xµ.

Let job jµ be any job arriving at time τ ′µ that is scheduled in batch Xµ at time τµ. Since jµ is not
in batch Xℓ, it must be that batch Xℓ is full, as jµ was available to be sent with τℓ ∈ [τ ′µ, τµ]. Again
since batch Xℓ was scheduled without job jµ, the EDF rule implies that the jobs in J(Xℓ) have
deadlines no later than the deadline of jµ. Thus, all jobs in J(Xℓ) have deadline no later than τ ,
since jµ ∈ J(Xµ) has deadline ≤ τ by the inductive hypothesis.

13



𝝉 = dj*𝝉1 𝝉0rj*𝝉0’𝝉1’ 𝝉2𝝉2’
Time horizon

J(X0)
J(X1)

J(X2)

Figure 4: Constructing intervals. At time τ = dj∗ , job j∗ (highest bold interval) must be executed.
Algorithm 3 decides which machine type to use for the next batch at τ by constructing intervals I0, I1, I2, I3,
which are indicated on the time horizon, where I0 is the blue interval, I1 is the union of the blue and orange
intervals, I2 is the union of the blue, orange, and pink intervals, and I3 is the union of all colored intervals.
These intervals are defined by taking the previous interval and extending it to the earliest arrival time of a
job in the corresponding batch. Here Algorithm 3 decides to use a batch of type 3. Capacities of batches
in this instance are B0 = 1, B1 = 3, B2 = 8, B3 = 20. Jobs with bold (arrival time, deadline) intervals are
executed in the new batch, which can have less than B3 jobs if these are all the jobs in the waiting list W .

This completes the inductive step.

Finally, let us look at the moment that the algorithm has found an interval Ik that does not contain
a time executing a batch of type k; we can assume that k > 0 as we already considered the case
when k = 0. Recall that this will be the interval associated with the new batch, i.e., the algorithm
sets Ĩ(X) = Ik. Note that [τ ′k−1, τ ] ⊆ Ik and recall that S̃(X) is the critical job of batch X plus all

the non-critical jobs of batch Xk−1. Since batch Xk−1 is full, |S̃(X)| = Bk−1 and so Condition (1)
is satisfied. Moreover, every job in J(Xk−1) has arrival time at or after τ ′k−1 and deadline at most
τ , as proven above. The critical job of batch X also has arrival time and deadline inside Ik (since
Ik contains I0), and we conclude that Condition (2) is satisfied since Ĩ(X) = Ik. ■

Proposition 12 Algorithm 2 produces batches X equipped with {(Ĩ(X), t(X), S̃(X))}X∈X which
satisfy Condition (3) of being a valid interval assignment (Definition 6).

Proof Intervals of the same type cannot intersect; see the while loop in Algorithm 3. ■

Lemma 13 Algorithm 2 produces batches X equipped with {(Ĩ(X), t(X), S̃(X))}X∈X which satisfy
Condition (4) of being a valid interval assignment (Definition 6).

Proof Fix a non-critical job jk that is in J(Xk). If jk were in more than one batch, it must
have ended up in batches S̃(X) and S̃(X ′), where both X and X ′ are of type k + 1. But then,
by Condition (3), these corresponding intervals Ĩ(X) and Ĩ(X ′) must be disjoint. These intervals
cannot be disjoint, since by Condition (2) they both contain [rjk , djk ]. ■

Proof [Proof of Theorem 1 for unit jobs] Combining Lemmas 11 and 13 with Proposition 12, we see
that Algorithm 2 schedules batches X equipped with a valid interval assignment {(Ĩ(X), t(X), S̃(X))}X∈X .
By Assumption 3, the costs of machines are all powers of 2, and recall we make this assumption with
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only a factor 2 loss in the competitive ratio. Therefore, the cost of the batches in X is
∑

X∈X 2t(X).

Applying Lemma 7 to {(Ĩ(X), t(X), S̃(X))}X∈X , we see that for L = {Ĩ(X)}X∈X :

cost(OPT) ≥ 1

2
· 1
4
·
∑
I∈L

2tI =
1

8
·
∑
X∈X

2t(X).

Note the factor of 2 in the first inequality follows from Proposition 2. Therefore, the cost of X is
at most 8 · cost(OPT).

The running time of this algorithm is O(n log n). As in Algorithm 1, we sort J so that J ′ can be
found in time |J ′|. We use a min-heap with keys dj , for elements j ∈ W , to store W . We use
the sorted J to find the next time slot where J ′ ̸= ∅ and compare it with the smallest key in W .
Recall that K ≤ log n is an upper-bound on the number of types of machines by Proposition 5.
We also keep for each type ℓ ∈ {0, . . . ,K} the time τ(X) and the earliest arrival time of a job in
J(X), where X is the latest batch of type ℓ. Using these, each critical job requires at most K + 1
iterations through the while loop of Algorithm 3 to choose the type of the batch which will contain
this critical job. In time O(log n) per job, we can update the data structures. ■

4 Proof of Theorem 3

Here, we prove a lower bound of 2 for the competitive ratio of any deterministic online algorithm,
assuming an all-powerful (also called adaptive-offline [BE98]) adversary. Our construction will
also result in an agreeable instance of unit jobs, which implies that Algorithm 1 is an optimal
deterministic algorithm for agreeable instances.

Proof [Proof of Theorem 3] Suppose that there are two machine types, which we call “small”
and “large”. The small machines have cost 1 and capacity 1, whereas the large machines have
cost M and capacity M3, where M is a large even integer. We call large and small batches the
corresponding batches of jobs. Here, jobs are unit length. In this instance, the release time of every
job will be odd and the deadline of every job will be even. Many jobs will have the same release
time, but no two jobs will have the same deadline. The adversary’s only action will be to release
groups of M3/2 jobs, where those M3/2 jobs arrive at some time τ and each released job has as
deadline the earliest even time slot that does not already contain a job deadline (thereby adding
M3/2 unique deadlines to the instance). Note that this release structure will result in an agreeable
instance.

At time 1, the adversary releases one group of M3/2 jobs. If no large machine is used to execute
any of the jobs from the current group, then no more jobs are released by the adversary. Otherwise,
the adversary will release another group of M3/2 jobs at the first odd time step after the algorithm
uses a large machine. The adversary repeats this at most M − 1 more times, so that we have at
most M such groups. We index the groups of jobs released by the adversary as β1, . . . , βM .

We now show why this instance implies a lower bound of 2 on the competitive ratio. First, consider
the case where the algorithm uses at least 2M2 small machines in a row in some group. These
batches would incur a cost of at least 2M2. One feasible schedule across all groups of jobs would
be to have instead executed all of the jobs from each group in a large batch at the first deadline
of a job from each group, which would have incurred a cost of at most M2 total. This implies a
competitive ratio of at least 2.
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Figure 5: An illustration for the proof of Theorem 3. Each red thick arrow represents the arrival
of M3/2 jobs. The short thin arrows represent the scheduling of a batch on a small machine, and
the long thin arrows represent the scheduling of a batch on a large machine.

See Figure 5 for an illustration of the rest of the proof. If an algorithm does not send 2M2 small
batches in a row in any group, then it executes at least one large batch for every group. Note
that in this case all M groups are released by the adversary. Let qi represent the number of small
batches scheduled by the algorithm between the releases of groups βi and βi+1 for i ∈ [M − 1], and
let qM be the number of small batches scheduled by the algorithm after βM was released. Then
the cost incurred by the algorithm is M2 +

∑M
i=1 qi.

We consider two other possible solutions to this instance (see Solution 1 and Solution 2 in Figure
5). One possible solution is to schedule a large batch at the first deadline, then small batches at
the next q2 + 1 deadlines, then a large batch at the next deadline, then small batches at the next
q4 + 1 deadlines, and so on, ending with a large batch to clear away any remaining jobs. This
solution is feasible as we can map any job executed by the algorithm to a batch in the solution, as
follows. Any job executed in a small batch in an even group in the algorithm is also executed by
a small batch in this solution. The job with the earliest deadline that is in a large batch in every
even batch is also in a small batch. Every other job executed by the algorithm is in a large batch.
Since the algorithm scheduled all jobs, we know this solution scheduled all jobs as well. The cost

of this solution is at most (M/2 + 1)M +
∑M/2

i=1 (1 + q2i) = (M + 3)(M/2) +
∑M/2

i=1 q2i.

Another possible solution is to use small batches at the first q1 +1 deadlines, then a large batch at
the next deadline, then small batches at the next q3 + 1 deadlines, and so on, ending with a large
batch to clear away any remaining jobs. We can again show this solution is feasible by mapping
jobs carried by the algorithm to jobs carried by this solution in a similar fashion. The cost of this

solution is at most (M/2+1)M +
∑M/2

i=1 (1+ q2i−1) = (M +3)(M/2)+
∑M/2

i=1 q2i−1. The sum of the
costs for these two possible solutions is at most (1 + 3/M) times the cost of the online algorithm.
This then implies that the solution with the lower cost of the two is at most (1+3/M)/2 times the
cost of the online algorithm. Letting M go to infinity completes the proof of a lower bound of 2 for
the competitive ratio of any deterministic online algorithm in the all-powerful adversary model. ■
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5 Conclusion and Future Directions

We study online busy time scheduling with flexible, uniform-length jobs on heterogeneous machines.
For the general case, we design an 8(2p− 1)/p-competitive algorithm. When jobs have unit length
and agreeable deadlines, a simpler algorithm is 2-competitive, which is tight. We focused on jobs
that have uniform processing time and resource requirement5, which could be relaxed in future
work. Indeed, Ren and Tang [RT20] consider inflexible jobs with different heights. Sarpatwar et al.
[SSS23] consider preemptively scheduling flexible jobs with arbitrary processing times and heights
on homogeneous machines; in the online setting, there is a 3/2 lower bound on the competitive ratio
of any online algorithm that knows a job’s characteristics at arrival time, even assuming agreeable
deadlines.

Generalizing our setting to allow non-uniform processing lengths or non-uniform heights introduces
significant complexity into the problem. If jobs have different processing times, then we are no
longer able to only schedule jobs p−1 time steps before deadlines, and would need to reexamine our
earliest deadline first heuristic. For heterogeneous machines, if jobs have unit length and agreeable
deadlines but are allowed to have a resource requirement, then we can still apply our Greedy
algorithm (Algorithm 1) and get a competitive ratio of 2, but this may not be a polynomial-time
algorithm—for example, if jobs have heights and a machine can only process a set of jobs of total
height at most 1 (homogeneous machines), then GetOptimalBatches() must solve a bin-packing
problem. If GetOptimalBatches() is an α-approximation algorithm, we get a competitive ratio of
2α. When deadlines are not agreeable and jobs have heights, we do not know how to extend our
8-competitive algorithm (Algorithm 2), even when jobs are unit-length. We can no longer assume
that the machine with the largest capacity is the most cost-efficient, as jobs may not fit on smaller
machines.

Acknowledgements

We would like to thank an anonymous referee for suggesting that our Algorithm 2 can be adapted
to jobs of uniform processing time instead of just unit; indeed this was true.

5Recall that in the literature, the resource requirement is also known as the height of a job.
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A Proof of Theorem 1

We prove a lower bound on cost(OPT) in Subsection A.2, and then use it to analyze our algorithm
that proves Theorem 1 in Subsection A.3.

First, we begin with some additional preliminaries. Otherwise, we use the same notation as in the
main body.

A.1 Additional preliminaries for Section A

When we say that a machine is running in the interval [α, β], we mean that the machine is running
at all time steps in the inclusive interval. For example, in [α, α], the time slot α is active, and in
[α, α + 1] time slots α and α + 1 are active. Thus the cost of running a machine of type k for all
time steps in the interval [α, β] is ck · (β−α+1). This cost is incurred regardless of how many jobs
are running on the machine. Also, jobs can be assigned to a machine that is already processing
other jobs, as long as there is spare capacity, though this may result in the machine running longer.

We first show that we can assume that all machines run for exactly 2p−1 time steps, and only lose
a factor of (2p − 1)/p in the competitive ratio. Intuitively, it is helpful to think about machines
running for 2p− 1 time steps because any two jobs which are batched together at any point must
have a total processing time of at most 2p− 1 timeslots.

Proposition 14 When all jobs have uniform length p, we can assume that machines run for exactly
2p− 1 time steps (thus each batch has 2p− 1 time steps), while only losing a factor of (2p− 1)/p
in the competitive ratio.

Proof

Indeed, suppose that a feasible solution runs a machine of type k at all time steps in the interval
[α, β], for a cost of ck · (β − α + 1). Note it must be that β ≥ α + p − 1, or else no job could be
scheduled on this machine. Let γ = ⌊(β − α + 1)/p⌋. For each i = 0, . . . , γ − 1, another feasible
schedule runs γ machines of type k for the intervals [α + i · p, α + (i + 2)p − 2], for a total cost
of ck · γ · (2p − 1). One can easily check that γ · (2p − 1) ≤ 2p−1

p (β − α + 1) and that every job
scheduled on the original machine fits on exactly one of the new machines. Moreover, at no time
is a new machine over capacity, as otherwise the original schedule must have been over capacity at
the midpoint of the processing time of that machine.

■

Based on the proposition, throughout this section, we make the following assumption.

Assumption 15 All machines are run exactly for 2p− 1 time slots. For a machine of type k, we
only count ck in the objective function, ignoring a multiplicative factor of (2p− 1).

The rest of this subsection is restating propositions and assumptions from the main body, though
here we also include the proofs.

We show in the following proposition that we can assume that all machine costs are powers of 2,
while losing only a factor of 2 in the competitive ratio.

Proposition 16 (Restating Proposition 2) With only losing a factor of 2 in the competitive
ratio, we can assume that for all k ∈ Z≥0, ck = 2q for some q ∈ Z≥0, and c0 = 1.
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Proof First, if c0 ̸= 1, scale all of the machine costs by 1/c0. Note this does not affect the
optimality of any schedules. For each k, let qk be the smallest integer such that ck ≤ 2qk . Then
take c′k = 2qk to be the new machine cost for each k. Note that the cost of a schedule S with
machine costs c′ is at most 2 times the cost of schedule S with machine costs c. ■

We also make the following assumption with only an additional factor 2 loss.

Assumption 17 (Restating Assumption 3) For k ∈ Z≥0, a machine of type k has cost ck =
2k.

This assumption follows with only a factor 2 loss in the competitive ratio because Proposition 16
allows us to assume that all machine costs are powers of 2, and if a machine of cost 2k is not present
for some k ∈ Z, one could just use 2k−k′ machines of cost 2k

′
, for k′ the largest type less than k

that is present.

This assumption is useful in discussing the cost-per-job of the different machine types, as seen in
the following lemma.

Proposition 18 (Restating Proposition 4) Given Assumption 17, one can show that without
loss of generality the cost-per-job is non-increasing in the machine types, i.e., c0/B0 ≥ c1/B1 ≥ . . ..

Proof Suppose we are given machine types satisfying Assumption 17. If ever there existed k with
ck/Bk < ck+1/Bk+1, then there always exists an optimal schedule that does not use any machines
of type k + 1. This is because any schedule that used machines of type k + 1 can replace each
machine of type k+ 1 with 2 machines of type k, since by Assumption 3 machine costs are powers
of 2. ■

Assumption 17 allows us to upper-bound K, the number of distinct machine types.

Proposition 19 (Restating Proposition 5) Given Assumption 17, the number of distinct ma-
chine types is bounded, with K ≤ log n.

Proof By Assumption 17, a machine of type k has cost ck = 2k, and by Proposition 18, ck/Bk ≥
ck+1/Bk+1. Substituting in for the costs and rearranging, we see that Bk+1 ≥ 2Bk. The batch sizes
are geometrically increasing by at least a factor of 2. Since there are at most n jobs, the highest
capacity machine that is relevant to the instance processes a batch of size at most n. It follows
that K ≤ log n. ■

A.2 A lower bound on cost(OPT)

We consider the following definition, for which Figure 2 is an accompaniment.

Definition 20 For a set of jobs J equipped with arrival times and deadlines in [0, T ], let an interval
assignment A be a family of tuples {(I, tI , JI)} of a continuous interval I ⊆ [0, T ], a type tI , and
a set of jobs JI ⊆ J . Let L denote the multi-set of all intervals I with (I, tI , JI) ∈ A and let I(j)
be the interval that job j is assigned to. We define a valid interval assignment as one such that the
following holds:

1. When tI ≥ 1, then |JI | = BtI−1, and when tI = 0, then |JI | = 1.

2. If job j is in JI , then [rj , dj ] ⊆ I.
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3. For any two intervals I, I ′ ∈ L, if tI = tI′, then I and I ′ are disjoint.

4. Every job is assigned to at most one JI . If a job j is not assigned to any JI , then we write
I(j) = ∅.

We use valid interval assignments to lower bound the cost of an optimal offline solution, as in
the following lemma. We note that the only differences from the main body in the proof for the
following lemma are in Claim 23.

Lemma 21 For a set of jobs J equipped with arrival times and deadlines in [0, T ] satisfying As-
sumption 17 and Proposition 18, let A = {(I, tI , JI)} be a valid interval assignment with L the
multi-set of all intervals I with (I, tI , JI) ∈ A. Then,

cost(OPT) ≥ 1

4
·
∑
I∈L

2tI .

Proof At a high level, we will prove this by introducing at most 4·cost(OPT) credits and then
distributing them to all jobs j for which I(j) ̸= ∅. We will do this in such a way that the sum of
the credits distributed can be shown to be at least

∑
I∈L 2tI , proving the inequality in the lemma

statement.

Suppose that for each batch X of type k that OPT uses, we distribute credits to jobs in J(X) in
the following way:

• To each job j in J(X) with tI(j) ≤ k we give 2tI(j)/|JI(j)| credits.

• To each job j in J(X) with tI(j) > k, we give 2k+1/Bk credits.

Figure 3 depicts the distribution of credits.

We will first prove the following helpful claims regarding credits.

Claim 22 When tI(j) > k, the following holds:

2tI(j)

|JI(j)|
≤ 2k+1

Bk
.

Proof We observe that:
2tI(j)

|JI(j)|
= 2 · 2

tI(j)−1

BtI(j)−1

≤ 2 · 2
k

Bk
=

2k+1

Bk

where the inequality is because tI(j) > k and we assumed (based on Proposition 4) that larger
machines are more cost efficient. ■

Claim 23 The credits distributed by X of type k to jobs with tI(j) ≤ k is at most 2k+1.

Proof Let batch X use the time slots in the interval [α, β] and let τ = α+ (p− 1) = β − (p− 1)
(note this equality is using Assumption 15). Any job j in J(X) has τ ∈ [rj , dj ]. We have required
that all intervals with the same type must be disjoint, and therefore τ can intersect at most one
interval I of each type k′ with k′ ≤ k. Moreover, since any job assigned to an interval has its arrival
time and deadline inside that interval, all the jobs in J(X) that are assigned to an interval of type
k′ are assigned to I above. From each such interval I, J(X) contains at most |JI | jobs, and so the
total amount of credits awarded by X to jobs associated with I is at most 2k

′
. The total amount of
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credits awarded by X to jobs with tI(j) ≤ k is therefore upper bounded by 1+ 2+ . . .+2k ≤ 2k+1.
■

Claim 24 The credits distributed by X of type k to jobs with tI(j) > k is at most 2k+1.

Proof There are at most Bk jobs in batch X, and batch X distributes 2k+1/Bk to each job with
tI(j) > k, so the total amount of credits awarded to jobs with tI(j) > k is upper bounded by 2k+1.
■

We use these claims to prove the lemma statement. Let credit(j) denote the amount of credit
awarded to job j. Then

∑
I∈L

2tI =
∑
I∈L

∑
j∈JI

2tI

|JI |
=

∑
j:I(j)̸=∅

2tI(j)

|JI(j)|
≤

∑
j:I(j)̸=∅

credit(j) ≤ 4 · cost(OPT).

Note that the first sum is over L, which is a multi-set, so in particular an interval might contribute
to the sum multiple times. For the first inequality, we note that every interval I must intersect some
batch used by OPT, otherwise OPT would not have picked up the jobs associated with I (recall
that |JI | > 0). Therefore, every job j associated with an interval must receive at least 2tI(j)/|JI(j)|
credits (by construction and by Claim 22).

For the second inequality, we combine Claims 23 and 24 to observe that the total credits distributed
by each batch X of type k sent by OPT is at most 2k+2, while the cost incurred by OPT for using
batch X is 2k. Therefore, the total amount of credit awarded for all batches used by OPT will not
exceed 4·cost(OPT). This finished the proof of Lemma 21. ■

The constant of 1/4 given by Lemma 21 is tight even for p = 1. See Appendix C.

A.3 Main algorithm and analysis

We use Algorithm 4 to prove Theorem 1. At any time during the algorithm’s execution, there is
at most one batch X∗ (and hence at most one machine) that is open to processing more jobs if
it has excess capacity. The algorithm scans the time horizon until we reach a time slot τ where
either some job j∗ is not assigned and has reached τ = dj∗ − p + 1, or the batch X∗ reaches the
mid-point of its active interval. If there is a job j∗ as above and X∗ is not full (in other words,
|J(X∗)| < Bt(X∗), where t(X) is the type of batch X), then assign j∗ to batch X∗. If there is a job
j∗ as above and X∗ is full, Algorithm 4 must decide which machine type to open and use for j∗,
and this decision is made by the subroutine in Algorithm 5. If the batch X∗ reaches the mid-point
of its active interval, then we fill it up to capacity (or we fill it up with all the waiting jobs) using
the EDF rule. As before, in the pseudocode, W is the set of unassigned jobs (jobs waiting to be
scheduled).

Recall that in the proof of the lower bound, it was helpful to associate a type tI and a set of jobs
JI to interval I. In the algorithm analysis, it will be helpful to associate a type t(X), two sets
of jobs S̃(X) and J(X), and an interval Ĩ(X) to batch X. It is not surprising to see t(X) as the
associated type, but what might be surprising is to see two sets of associated jobs. While J(X) are
the jobs in batch X, S̃(X) are the jobs we charge to X for our analysis, where jobs may be paying
for a batch other than the one they are a part of.
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Algorithm 4 The main algorithm

Let W ← ∅, τ ← 0, X ← ∅, and X∗ ← undefined.
while τ ̸= NULL do

▷ Let J ′ be the set of jobs with arrival time τ .
▷ Update W ←W ∪ J ′.
while ∃ j∗ ∈W with dj∗ = τ + p− 1 do // If many such j∗, choose one arbitrarily

if X∗ is defined and |J(X∗)| < Bt(X∗) then
▷ J(X∗)← J(X∗) ∪ {j∗}, W ←W \ {j∗}.

else
if X∗ is defined then // Here, the current batch X∗ is full

▷ Update X ← X ∪X∗.
▷ Add {(Ĩ(X∗), t(X∗), S̃(X∗)} to {(Ĩ(X), t(X), S̃(X))}X∈X .

end if
▷ Run Algorithm 5 with inputs τ , W , j∗, and X , which outputs new batch X∗,

equipped with t(X∗), J(X∗), τ(X∗), S̃(X∗), Ĩ(X∗).
end if

end while
if X∗ is defined and τ = τ(X∗) + p− 1 then

while |J(X∗)| < Bt(X∗) and |W | > 0 do
▷ Find the job j ∈W with earliest deadline.
▷ Update J(X∗)← J(X∗) ∪ {j}, W ←W \ {j}.

end while
▷ Update X ← X ∪X∗

▷ Add {(Ĩ(X∗), t(X∗), S̃(X∗)} to {(Ĩ(X), t(X), S̃(X))}X∈X .
▷ X∗ ← Undefined.

end if
▷ Increment τ ← τ + 1, or let τ = NULL if time has ended.

end while
▷ Return X .

Intuitively speaking, we employ a type of “pay-it-forward” philosophy. We charge the cost of one
of the batches that the algorithm produces to the cost that OPT expends to execute one job in
that batch (which we will refer to as the critical job) and the non-critical jobs in another batch.
The critical job in batch X∗ is the job that was first introduced in J(X∗) when batch X∗ is created
in Algorithm 5. To determine S̃(X∗), throughout the algorithm we will keep track of an interval
associated with batch X∗, which we denote by Ĩ(X∗). Note this is a slight abuse of notation from
the lower bound subsection, where we let I(j) denote the interval containing job j. Additionally,
tracking S̃(X∗) and Ĩ(X∗) is not necessary for the algorithm (hence they are given the additional
tilde in the notation), but for clarity in the analysis, we construct them in Algorithm 5 and keep
them in Algorithm 4.

In order to use our lower bound from the previous subsection, we will use the batches to construct
a valid interval assignment (as in Definition 20). Note that Algorithm 4 sets t

Ĩ(X)
= t(X) when

it defines {(Ĩ(X), t(X), S̃(X))}X∈X as an interval assignment. We prove that the conditions for
Definition 20 hold in Lemmas 25 and 27 and Proposition 26.

Lemma 25 Algorithm 4 produces {(Ĩ(X), t(X), S̃(X))}X∈X that satisfy Conditions (1) and (2) of
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Algorithm 5 Deciding the next batch

Input: time τ , waiting jobs W , critical job j∗ with dj∗ = τ + p− 1, and batches X , where every

X ∈ X is equipped with t(X), J(X), τ(X), S̃(X), Ĩ(X).
▷ Let k ← 0.
▷ Let I0 ← [rj∗ , τ + p− 1]. // Note that dj∗ = τ + p− 1
while Ik contains a time slot τk := τ(Xk) + p− 1 with t(Xk) = k for some Xk ∈ X do
// Only the latest such τk is stored

▷ Let jk be a job in J(Xk) with the earliest arrival time. // Tie-break arbitrarily
▷ Let τ ′k be the arrival time of jk.
▷ Set Ik+1 ← Ik ∪ [τ ′k, τk].
▷ Increment k ← k + 1.

end while
▷ and S∗ ← {j∗}.
if k > 0 then

Add all the non-critical jobs of Xk−1 to S∗.
end if
▷ Create batch X∗ with type t(X∗)← k, start time τ(X∗)← τ , and jobs J(X∗)← {j∗}.
▷ Define Ĩ(X∗)← Ik and S̃(X∗)← S∗.
Return X∗.

being a valid interval assignment (Definition 20).

Proof Let X ∈ X and let τ = τ(X). If t(X) = 0, then indeed there is only the critical job
in S̃(X), so |S̃(X)| = 1. Further, the critical job j∗ completely determines the interval, with
Ĩ(X) = [rj∗ , dj∗ ]. Thus, Conditions (1) and (2) are satisfied when t(X) = 0.

Fix t(X) = k > 0. The midpoint of batch X is the right endpoint of Ĩ(X), and recall that this
endpoint is time τ + p − 1. Consider the sequence of nested intervals that the algorithm built up
to construct Ĩ(X), i.e., I0, I1, . . . , Ik, where now Ĩ(X) = Ik. These are indeed nested intervals,
since for all j = 0, . . . , k − 1, Ij contains τj and Ij+1 is defined by Ij+1 ← Ij ∪ [τ ′j , τj ]. Associated

with these intervals are batches X0, X1, . . . , Xk−1 ∈ X that forced interval Ĩ(X) to be created (see
Algorithm 5). Let τ ′ℓ denote the arrival time of the earliest arriving job in J(Xℓ). Since τ ∈ Ĩ(X),

we have that for all τ̂ ∈ Ĩ(X), either τ̂ ∈ I0 or there exists some 0 < ℓ < k such that τ̂ ∈ [τ ′ℓ, τℓ].

We prove by induction on ℓ < k that Xℓ is a full batch (that is, |J(Xℓ)| = Bt(Xℓ)), and all jobs in
J(Xℓ) have deadline no later than τ + p− 1.

Base case: Here, ℓ = 0. Let j∗ be the critical job of X. Note that τ(X0) + p − 1 = τ0 ∈ I0,
the left endpoint of I0 is rj∗ and the right endpoint of I0 is τ + p − 1 = dj∗ . The existence of X0

implies that τ(X0) ≤ τ , and furthermore the construction of X0 is completed at or before time
τ . Also, j∗ ̸∈ J(X0). The jobs j added to J(X0) because they are due, i.e. the jobs j such that
τ = dj − p + 1, certainly have deadline at most τ + p − 1. The jobs added to J(X0) by EDF at
time τ(X0) + p− 1 = τ0 have deadline at most dj∗ since otherwise j∗ would be added to J(X0), as
τ0 ∈ [rj∗ , dj∗ ]. J(X0) must be full, as otherwise j∗ would have been in batch X0.

Induction step: Fix some integer 1 ≤ ℓ < k. Assume that for all 0 ≤ ℓ′ < ℓ, Xℓ′ is filled to its
capacity, and all the jobs in batch Xℓ′ have deadline no later than τ + p− 1. We will show that Xℓ

is filled to its capacity, and all the jobs in batch Xℓ have deadline no later than τ + p− 1. Since Xℓ
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exists, either τℓ ∈ I0 (in which case the reasoning from the base case applies), or there exists some
µ < ℓ with τℓ ∈ [τ ′µ, τµ]. The latter case is the interesting one, so we fix the smallest such µ. Note
that this implies that τℓ < τµ, which implies that batch Xℓ was created and completely constructed
before batch Xµ is created.

Let job jµ be any job arriving at time τ ′µ that is scheduled in batch Xµ. Let j
∗
µ be the critical job

of batch Xµ (it is possible that jµ = j∗µ). Note that j∗µ ̸∈ J(Xℓ) and jµ ̸∈ J(Xℓ). The jobs added to
J(Xℓ) because they were due, i.e. j ∈ J(Xℓ) with τ = dj−p+1, have deadline at most τ(Xµ)+p−1,
since otherwise j∗µ would have been added to J(Xℓ). Note that τu = τ(Xµ) + p− 1 = dj∗µ and that
the induction hypothesis gives dj∗µ ≤ τ + p − 1. The jobs added to J(Xℓ) to fill the batch have
deadline at most djµ , as τℓ ∈ [rjµ , djµ ] and otherwise jµ would have been in J(Xℓ). The induction
hypothesis gives us that djµ ≤ τ + p− 1, and if J(Xℓ) were not full, then at time τℓ = τ(Xℓ)+ p− 1
there are no jobs in W . This cannot happen since τℓ ≥ τ ′µ = rjµ and thus jµ would be in W when
the construction of Xℓ is completed. This completes the inductive step.

Finally, let us look at the moment that the algorithm has found an interval Ik that does not contain
a time τk; we can assume that k > 0 as we already considered the case when k = 0. Recall that this
will be the interval associated with the new batch, i.e., the algorithm sets Ĩ(X) = Ik. Note that
[τ ′k−1, τ + p − 1] ⊆ Ik and recall that S̃(X) is the critical job of batch X plus all the non-critical

jobs of batch Xk−1. Since batch Xk−1 is full, |S̃(X)| = Bk−1 and so Condition (1) is satisfied.
Moreover, every job in J(Xk−1) has arrival time at or after τ ′k−1 and deadline at most τ + p − 1,
as proven above. The critical job of batch X also has arrival time and deadline inside Ik (since Ik
contains I0), and we conclude that Condition (2) is satisfied since Ĩ(X) = Ik. ■

Proposition 26 Algorithm 4 produces batches X equipped with {(Ĩ(X), t(X), S̃(X))}X∈X which
satisfy Condition (3) of being a valid interval assignment (Definition 20).

Proof Note that the right endpoint of Ĩ(X) is τ(X) + p − 1. By construction, intervals of the
same type cannot intersect; see the while loop condition in Algorithm 5. ■

Lemma 27 Algorithm 4 produces batches X equipped with {(Ĩ(X), t(X), S̃(X))}X∈X which satisfy
Condition (4) of being a valid interval assignment (Definition 6).

Proof Fix a non-critical job jk that is in J(Xk). If jk were in more than one batch, it must
have ended up in batches S̃(X) and S̃(X ′), where both X and X ′ are of type k + 1. But then,
by Condition (3), these corresponding intervals Ĩ(X) and Ĩ(X ′) must be disjoint. These intervals
cannot be disjoint, since by Condition (2) they are both required to contain [rjk , djk ]. ■

Proof [Proof of Theorem 1] Combining Lemmas 25 and 27 with Proposition 26, we see that
Algorithm 4 schedules batches X with a valid interval assignment {(Ĩ(X), t(X), S̃(X))}X∈X . By
Assumption 17, the costs of machines are all powers of 2, and recall we make this assumption with
only a factor 2 loss in the competitive ratio. The cost of the batches in X is∑

X∈X
2t(X).

Applying Lemma 21 to {(Ĩ(X), t(X), S̃(X))}X∈X , we see that for L = {Ĩ(X)}X∈X :

cost(OPT) ≥ p

2p− 1
· 1
2
· 1
4
·
∑
I∈L

2tI =
p

8(2p− 1)
·
∑
X∈X

2t(X).
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Note the factor of 2 in the first inequality follows from Proposition 16 and the factor of (2p− 1)/p
follows from Proposition 14. Therefore, the cost of X is at most (8(2p− 1)/p) · cost(OPT).

The running time of this algorithm is O(n log n). As in Algorithm 1, we sort J so that J ′ can be
found in time |J ′|. We use a min-heap with keys dj − p + 1, for elements j ∈ W , to store W . We
use the sorted J to find the next time slot where J ′ ̸= ∅ and compare it with the smallest key in
W and with τ(X∗) + p − 1. Recall that K ≤ log n is an upper-bound on the number of types of
machines by Proposition 19. We also keep for each type ℓ ∈ {0, . . . ,K} the time τ(X) and the
earliest arrival time of a job in J(X), where X is the latest batch of type ℓ. Using these, each
critical job requires at most K + 1 iterations through the while loop of Algorithm 5 to choose the
type of the batch which will contain this critical job. In time O(log n) per job, we can update the
data structures. ■

B Discussion on Other Algorithms

We investigated several simpler algorithmic approaches for the general (non-agreeable) model, and
observe that many natural algorithms do not obtain constant-factor competitive ratios. In this
section, we highlight several of these algorithms and give intuition for why they fail, even just for
unit jobs. For each of the below examples, we assume that we have machine types {0, ...,K} with
the capacity of each machine type ℓ being 10ℓ and the cost of each machine ℓ being 2ℓ. We also
assume all jobs have unit length. Here, K is an even integer that we will make large to obtain large
competitive ratios.

Greedy Consider Algorithm 1, which schedules all jobs that are currently present at each time
step where some job has a deadline. We showed in Section 2 that this algorithm works well when the
input jobs have agreeable deadlines. In the general setting, the main problem with this algorithm
is that it might have been better to send the majority of the jobs at or nearer to their deadlines.
Suppose that at each time slot 10K/2 jobs arrive, of which one has an immediate deadline (i.e., at
the next time slot) and all others have the same late deadline. Suppose 10K/2 sets of these jobs
arrive. Greedy would send every job at its arrival time, in batches of 10K/2. Meanwhile, OPT could
use 10K/2 batches of type 0 to send each job with an immediate deadline and one batch of cost 2K

to clear all jobs with the late deadline. Then our algorithm incurs cost 10K/2 · 2K/2, while OPT
incurs cost 10K/2 + 2K . The competitive ratio would be Ω(2K/2).

Most cost-efficient Another algorithm is to use the machine with the best cost-per-job scheduled
(after waiting for a deadline and using EDF). The same setup used to show that Greedy can perform
poorly also suffices to show that this cost-efficient algorithm performs poorly. Using the same logic,
we find that the cost-efficient algorithm incurs cost 10K/2 ·2K/2, while OPT incurs cost 10K/2+2K .
The competitive ratio would again be Ω(2K/2).

Lazy Since the Greedy algorithm was sending jobs too early, one might instead try a lazy approach
in which the algorithm does the following: schedule the minimum number of jobs that have an
immediate deadline, until there are enough jobs to fill the largest capacity machine, at which point
use the largest capacity machine. One problem with this algorithm occurs when not enough jobs
arrive to fill the largest machine. Suppose that 10K/2 jobs arrive at time 1, each with a different
deadline. Lazy would send each job separately on a machine of type 0, while OPT would send all
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jobs at the beginning on a machine of type K/2. Then our algorithm incurs cost 10K/2, while OPT
incurs cost 2K/2. The competitive ratio would be Ω(5K/2).

Ramp-up We present one final simple algorithm we call the ramp-up algorithm. The ramp-up
algorithm keeps track of an accumulated cost and always uses the largest machine type whose cost
is at most the accumulated cost, or a machine of type 0 if no such machine exists. When the ramp-
up algorithm clears all jobs, then it resets the accumulated cost to 0. One problem is when the
algorithm keeps ramping up and clearing too soon, it fails in the manner of the Greedy algorithm.

The following example shows that the ramp-up algorithm cannot obtain a constant factor competi-
tive ratio. Suppose that 2 jobs arrive at time 0 and groups of 10ℓ jobs arrive at each succeeding time
slot 2ℓ+1, for 1 ≤ ℓ < K/2. When ℓ = K/2, a group of 10K/2−1 jobs arrive. In each group, one job
has an immediate deadline and the rest have the same very late deadline. Then our algorithm clears
all waiting jobs in 2 +K/2 machines for a total cost of 1 + 1 + · · ·+ 2K/2 = 21+K/2, and resets the
counter. Suppose that this set of job arrivals happens 10(K/2)−1 times. Then our algorithm would
have a total cost of 10(K/2)−1 · 21+K/2, while a solution of total cost of (2 +K/2) · 10(K/2)−1 + 2K

exists: use batches of type 0 for the “immediate” jobs from each group, and one batch of type K
to schedule all the other jobs at a very late moment. The competitive ratio would be Ω(2K/2/K).

Our Algorithm 2 does “ramp up” to use bigger and bigger machines if many jobs are waiting, but
manages to avoid the issue of ramping up too fast; for example, for the kind of adversary provided
in the previous paragraph, Algorithm 2 only uses machines of type 0 for each group.

C Tight Example for the Lower Bound

We show that the constant of 1/4 given by Lemma 7 (and Lemma 21) is tight. Suppose we are
given a set of unit jobs J equipped with arrival times and deadlines between [0, T ]. Let {(I, tI , JI)}
be a valid interval assignment A with L the multi-set of all intervals I with (I, tI , JI) ∈ A. For
convenience, let

σ(A) :=
∑
I∈L

2tI .

Lemma 28 For any ϵ > 0 there exists an instance and a valid interval assignment A such that
cost(OPT) <

(
1
4 + ϵ

)
σ(A).

Proof Let q be a large integer. Suppose that batches of type k ∈ {0, 1, . . . , q} each have capacity
2k and batches of type k ∈ {q + 1, q + 2, . . .} each have capacity 2q+k. All batches have cost 2k.

For this example, for every I and every j ∈ JI , [rj , dj ] = I. We construct the following family of
tuples. Figure 6 provides an illustration for q = 3. For r ∈ {1, 2, . . . , 2q}, and s ∈ {0, 1, . . . , q + 1},
we construct the tuple τ sr = (I, tI , JI) where I = [2r, 2r+1], tI = s, and JI is a set of “new” jobs (a
set disjoint from the other sets constructed so far) of the size required by tI . That is, if s = 0, then
|JI | = 1, and if s ∈ {1, 2, . . . , q + 1}, then |JI | = 2s−1. We also have a tuple τ ′ = (I, tI , JI) where
I = [0, 2q+1 + 2], tI = 2q + 2, and JI is a set of new jobs of the required size, that is |JI | = 23q+1.
These are all the jobs of this instance, and this is A, the family of tuples of this example.

Then
σ(A) = 2q(20 + 21 + · · ·+ 2q+1) + 22q+2 = 2q(2q+2 − 1) + 2q+2 = 22q+3 − 2q. (2)

Now we construct a feasible schedule for this instance. For r ∈ {1, 2, . . . , 2q}, we use a batch of
type q+1 at time 2r+1 to schedule all the jobs assigned to τ sr , for all s = 0, 1, . . . , q+1. There are
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exactly 1+ 1+ 2+ 4+ · · ·+2q = 2q+1 such jobs. We fill this batch with 22q+1− 2q+1 jobs assigned
to τ ′. After doing this for all r ∈ {1, 2, . . . , 2q}, we have scheduled all the jobs assigned to τ sr for
all r and all s, and we have scheduled 2q(22q+1 − 2q+1) = 23q+1 − 22q+1 of the jobs assigned to τ ′.
We use another batch of type q + 1 to schedule the remaining 22q+1 jobs that were assigned to τ ′.
The cost of this solution is:

(2q + 1) 2q+1 = 22q+1 + 2q+1.

By making q large enough we finish the proof of the lemma.

■

Therefore, in order to get a competitive ratio better than 4 in the setting where the jobs have
arbitrary intervals and costs powers of 2, it would be necessary to come up with a new lower
bound.
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type k ck Bk |JI | for tI = k

0 20 = 1 20 = 1 1

1 21 = 2 21 = 2 B1−1 = 21−1 = 1

2 22 = 4 22 = 4 B2−1 = 22−1 = 2

3 23 = 8 23 = 8 B3−1 = 23−1 = 4

4 24 = 16 27 = 128 B4−1 = 24−1 = 8

5 25 = 32 28 = 256 B5−1 = 28−1 = 128

6 26 = 64 29 = 512 B6−1 = 29−1 = 256

7 27 = 128 210 = 1024 B7−1 = 210−1 = 512

8 28 = 256 211 = 2048 B8−1 = 211−1 = 1024

1024 jobs …
 }

Interval type

0

1

2

3

4

6

Batch type 4, 
128 jobs

Figure 6: The construction used in Lemma 28 for q = 3. The multiset A has one interval I of type 6,
with associated JI the 1024 yellow jobs, and for each i = 0, . . . , 4, eight intervals I of type i with JI
as depicted in the figure (8 red jobs for type 4, and so on). Here a solution of cost (23+1)24 = 27+24

exists: the 9 vertical lines. On the other hand, σ(A) = 23(1 + 2 + 4 + 8 + 16) + 28 = 29 − 23.
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